Skip to main content
Log in

Quantum force sensing using backaction noise suppression in optomechanical system

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

In this paper, we investigate the quantum force sensing in a single optomechanical system by the use of a coherent quantum noise cancellation scheme. The system consists of a Fabry–Pérot cavity simultaneously coupled to a mechanical oscillator and an ensemble of atom. Accordingly, the dynamics of the systems are studied by utilizing the quantum Langevin equations approach. It is found that the backaction noise can be eliminated from coherent quantum noise cancellation. Remarkably, we examine a force sensor that uses coherent noise cancellation to beat the standard quantum limit. We also investigate the effect of coherent transitions to atomic noise suppresses, and these simultaneous processes can significantly enhance the performance of the quantum force sensor. Our scheme can be generalized to other hybrid optomechanical systems, and these results may have spectacular applications for the realization of the quantum force sensor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. A.A. Clerk, M.H. Devoret, S.M. Girvin, F. Marquardt, R.J. Schoelkopf, Introduction to quantum noise, measurement and amplification. Rev. Mod. Phys. 82, 1155 (2010)

    MathSciNet  MATH  ADS  Google Scholar 

  2. S. Ghosh, D. Carney, P. Shawhan, J.M. Taylor, Backaction-evading impulse measurement with mechanical quantum sensors. Phys. Rev. A 102, 023525 (2020)

    ADS  Google Scholar 

  3. C.M. Caves, Quantum-mechanical noise in an interferometer. Phys. Rev. D 23, 1693 (1981)

    ADS  Google Scholar 

  4. M.T. Jaekel, S. Reynaud, Quantum limits in interferometric measurements. Euro. Phys. Lett. 13, 301 (1990)

    ADS  Google Scholar 

  5. M. Tsang, C.M. Caves, Coherent quantum-noise cancellation for optomechanical sensors. Phys. Rev. Lett 105, 123601 (2010)

    ADS  Google Scholar 

  6. C. Fabre, M. Pinard, S. Bourzeix, A. Heidmann, E. Giacobino, S. Reynaud, Quantum-noise reduction using a cavity with a movable mirror. Phys. Rev. A 49, 1337 (1994)

    ADS  Google Scholar 

  7. M.H. Wimmer, D. Hammerer, K. Heurs, M. Coherent, Cancellation of backaction noise in optomechanical force measurements. Phys. Rev. A 89, 053836 (2014)

    ADS  Google Scholar 

  8. T. Caniard, P. Verlot, T. Briant, P.F. Cohadon, A. Heidmannm, Observation of back-action noise cancellation in interferometric and weak force measurements. Phys. Rev. Lett. 99, 110801 (2007)

    ADS  Google Scholar 

  9. T. Gebremariam, Y.X. Zeng, M. Mazaheri, C. Li, Enhancing optomechanical force sensing via precooling and quantum noise cancellation. Sci. China-Phys. Mech. Astron. 63, 210311 (2020)

    Google Scholar 

  10. S. Schreppler, N. Spethmann, N. Brahms, T. Botter, M. Barrios, D.M. Stamper-Kurn, Optically measuring force near the standard quantum limit. Science 344, 1486 (2014)

    ADS  Google Scholar 

  11. M. Aspelmeyer, T.J. Kippenberg, F. Marquardt, Cavity optomechanics. Rev. Mod. Phys. 86, 1391 (2014)

    ADS  Google Scholar 

  12. T. Gebremariam, Generation of the bipartite entanglement and correlations in an optomechanical array. J. Opt. Soc. Am. B 37, A245–A252 (2020)

    Google Scholar 

  13. A. Motazedifard, F. Bemani, M.H. Naderi, R. Roknizadeh, D. Vitali, Force sensing based on coherent quantum noise cancellation in a hybrid optomechanical cavity with squeezed-vacuum injection. New. J. Phys. 18, 073040 (2016)

    ADS  Google Scholar 

  14. P.H. Kim, B.D. Hauer, C. Doolin, F. Souris, J.P. Davis, Approaching the standard quantum limit of mechanical torque sensing. Nat. Commun. 7, 1 (2016)

    Google Scholar 

  15. W.P. Bowen, G.J. Milburn, Quantum optomechanics. Physics 86, 1391 (2015)

    MATH  Google Scholar 

  16. F. Marjan, A. Dalafi, Back-action evading measurement of the collective mode of a Bose–Einstein condensate. J. Opt. Soc. Am. B 37, 1263 (2020)

    ADS  Google Scholar 

  17. W. Zhao, S.D. Zhang, A. Miranowicz, H. Jing, Weak-force sensing with squeezed optomechanics. Sci. China-Phys. Mech. Astron. 63, 224211 (2020)

    Google Scholar 

  18. R.G. Knobel, A.N. Cleland, Nanometre-scale displacement sensing using a single electron transistor. Nature 424, 291 (2003)

    ADS  Google Scholar 

  19. S. Forstner, J. Knittel, E. Sheridan, J.D. Swaim, H. Rubinsztein-Dunlop, W.P. Bowen, Sensitivity and performance of cavity optomechanical field sensors. Photon. Sens. 2, 259 (2012)

    ADS  Google Scholar 

  20. J. Harms, Y. Chen, S. Chelkowski, A. Franzen, H. Vahlbruch, K. Danzmann, R. Schnabel, Squeezed-input, optical-spring, signal-recycled gravitational-wave detectors. Phys. Rev. D 68, 042001 (2003)

    ADS  Google Scholar 

  21. F. Bariani, H. Seok, S. Singh, M. Vengalattore, P. Meystre, Atom based coherent quantum noise cancellation in optomechanics. Phys. Rev. A 92, 043817 (2015)

    ADS  Google Scholar 

  22. S. Aldana, C. Bruder, A. Nunnenkamp, Equivalence between an optomechanical system and a Kerr medium. Phys. Rev. A 88, 043826 (2013)

    ADS  Google Scholar 

  23. J.B. Brask, R. Chaves, J. Kolodynski, Improved quantum magnetometry beyond the standard quantum limit. Phys. Rev. X 5, 031010 (2015)

    Google Scholar 

  24. R. Schnabel, N. Mavalvala, D.E. Mc.Clelland, P.K. Lam, Quantum metrology for gravitational wave astronomy. Nat. Commun. 1, 1 (2010)

    Google Scholar 

  25. K. Zhang, P. Meystre, W. Zhang, Back-action-free quantum optomechanics with negative mass Bose–Einstein condensates. Phys. Rev. A 88, 043632 (2013)

    ADS  Google Scholar 

  26. F.Y. Khalili, E.S. Polzik, Overcoming the standard quantum limit in gravitational wave detectors using spin systems with a negative effective mass. Phys. Rev. Lett. 121, 031101 (2018)

    ADS  Google Scholar 

  27. A. Cleland, Photons refrigerating phonons. Nat. Phys. 5, 458 (2009)

    Google Scholar 

  28. J.D. Thompson, B.M. Zwickl, A.M. Jayich, F. Marquardt, S.M. Girvin, J.G. Harris, Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane. Nature 452, 72 (2008)

    ADS  Google Scholar 

  29. B. Xiong, X. Li, X.Y. Wang, L. Zhou, Improve microwave quantum illumination via optical parametric amplifier. Ann. Phys. 385, 757 (2017)

    MathSciNet  MATH  ADS  Google Scholar 

  30. A.V. Taichenachev, A.M. Tumaikin, V.I. Yudin, L. Hollberg, Two-dimensional sideband Raman cooling and Zeeman-state preparation in an optical lattice. Phys. Rev. A 63, 033402 (2001)

    ADS  Google Scholar 

  31. J.J. Hopfield, Theory of the contribution of excitons to the complex dielectric constant of crystals. Phys. Rev. 112, 1555 (1958)

    MATH  ADS  Google Scholar 

  32. S. Gröblacher, K. Hammerer, M.R. Vanner, M. Aspelmeyer, Observation of strong coupling between a micromechanical resonator and an optical cavity field. Nature 460, 724 (2009)

    ADS  Google Scholar 

  33. Z. Yang, S.L. Chao, L. Zhou, Generating macroscopic quantum superposition and a phonon laser in a hybrid optomechanical system. J. Opt. Soc. Am. B 37, 1 (2020)

    ADS  Google Scholar 

  34. B. Xiong, X. Li, S.L. Chao, Z. Yang, W.Z. Zhang, W. Zhang, L. Zhou, Strong mechanical squeezing in an optomechanical system based on Lyapunov control. Photon. Res. 8, 151 (2020)

    Google Scholar 

  35. V.E. Tarasov, Fractional heisenberg equation. Phys. Lett. A 372, 2984 (2008)

    MathSciNet  MATH  ADS  Google Scholar 

  36. M.G. Moore, O. Zobay, P. Meystre, Quantum optics of a Bose Einstein condensate coupled to a quantized light field. Phys. Rev. A 60, 1491 (1999)

    ADS  Google Scholar 

  37. Y. Tanimura, P.G. Wolynes, Quantum and classical Fokker–Plank equations for a Gaussian–Markovian noise bath. Phys. Rev. A 43, 4131 (1991)

    ADS  Google Scholar 

  38. V. Giovannetti, D. Vitali, Phase-noise measurement in a cavity with a movable mirror undergoing quantum Brownian motion. Phys. Rev. A 63, 023812 (2001)

    ADS  Google Scholar 

  39. N.C. Sahoo, B.K. Panigrahi, P.K. Dash, G. Panda, Application of a multivariable feedback linearization scheme for STATCOM control. Electric Power Syst. Res. 62, 81–91 (2002)

    Google Scholar 

  40. E.X. DeJesus, C. Kaufman, Routh–Hurwitz criterion in the examination of eigenvalues of a system of nonlinear ordinary differential equations. Phys. Rev. A 35, 5288 (1987)

    MathSciNet  ADS  Google Scholar 

  41. X. Yang, Y. Ling, X. Shao, M. Xiao, Generation of robust tripartite entanglement with a single-cavity optomechanical system. Phys. Rev. A 95, 052303 (2017)

    ADS  Google Scholar 

  42. M. Abdi, S. Barzanjeh, P. Tombesi, D. Vitali, Phys. Rev. A 84, 032325 (2011)

    ADS  Google Scholar 

  43. L. Tian, Z. Li, Nonreciprocal quantum-state conversion between microwave and optical photons. Phys. Rev. A 96, 013808 (2017)

    ADS  Google Scholar 

  44. B. Xiong, X. Li, S.L. Chao, Z. Yang, R. Peng, L. Zhou, Strong squeezing of duffing oscillator in a highly dissipative optomechanical cavity system. Annalen der Physik 532, 1900596 (2020)

    ADS  Google Scholar 

  45. T. Gebremariam, Y.X. Zeng, X.Y. Chen, C. Li, Observation and measures of robust correlations for continuous variable system. Commun. Theor. Phys. 68, 661 (2017)

    ADS  Google Scholar 

  46. A. Motazedifard, A. Alafi, F. Bemani, M.H. Naderi, Force sensing in hybrid Bose–Einstein-condensate optomechanics based on parametric amplification. Phys. Rev. A 100, 023815 (2019)

    ADS  Google Scholar 

  47. M. Rossi, D. Mason, J. Chen, Y. Tsaturyan, A. Schliesser, Measurement-based quantum control of mechanical motion. Nature 563, 53 (2018)

    ADS  Google Scholar 

  48. J.D. Thompson, B.M. Zwickl, A.M. Jayich, F. Marquardt, S.M. Girvin, J.G.E. Harris, Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane. Nature 452, 72 (2008)

    ADS  Google Scholar 

  49. W. Zhao, S.D. Zhang, A. Miranowicz, H. Jing, Weak-force sensing with squeezed optomechanics. Sci. China-Phys. Mech. Astron 63, 224211 (2020)

    Google Scholar 

  50. R. Ghobadi, S. Gholizadeh, M. Mazaheri, Weak force measurement in bistable optomechanical system. Int. J. Opt. Photon. 9, 19 (2015)

    Google Scholar 

  51. A. Pontin, J.E.A. Lang, A. Chowdhury, P. Vezio, B. Marino, T.S. Monterio, Imaging correlations in hetrodyne spectra for quantum displacement sensing. Phys. Rev. Lett. 120, 020503 (2018)

    ADS  Google Scholar 

Download references

Acknowledgments

We would like to thank Merkebu Dereje and Nuredin Nassir for their help on English editing and grammar.

Funding

This research was supported by the College of Natural Sciences, Department of Physics, Arba Minch University, Arba Minch 21, Ethiopia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tesfay Gebremariam Tesfahannes.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest related to this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix

Effective susceptibilities

In this appendix, we express the effective susceptibilities of the cavity field (\(\chi _{a}\)), the membrane (\(\chi _{m}\)), and atomic ensemble (\(\chi _{c}\)) as:

$$\begin{aligned} \chi _{a}=&(i\omega +\frac{\kappa }{2})^{-1}, \end{aligned}$$
(25a)
$$\begin{aligned} \chi _{m}=&\frac{\omega _{m}}{\omega ^{2}_{m}-\omega ^{2}+i\omega \gamma _{m}}, \end{aligned}$$
(25b)
$$\begin{aligned} \chi _{c}=&\frac{-\omega _{m}}{\omega ^{2}_{m}-\omega ^{2}+i\omega \varGamma +\varGamma ^{2}/4}, \end{aligned}$$
(25c)

and the modified cavity field susceptibility \(\chi _{a}^{\prime }\) as:

$$\begin{aligned} \frac{1}{\chi _{a}^{\prime }}=&\frac{1}{\chi _{a}}-\varDelta _{0}\chi _{a}[g^{2}\chi _{m} +G^{2}\chi _{c}-\varDelta _{0}]. \end{aligned}$$
(26a)

The standard quantum limit

The noise spectrum result of a hybrid system with a standard optomechanical setup

$$\begin{aligned} S_\mathrm{stad}^{F}=&\frac{1}{2}\left[ \frac{\kappa }{4g^{2}\gamma _{m}\mid \chi _{m}\mid ^{2}} +\frac{4g^{2}}{\gamma _{m}\kappa }\right] , \end{aligned}$$
(27a)

the backaction noise scales directly proportional to the measurement \(g^{2}\) and the shot noise scales inversely proportional to the \(\frac{1}{g^{2}}\). In addition, to realize the lower bound of the standard quantum limit of continuous force sensing, we minimize \(S_{F}^\mathrm{stad}\) noise spectrum with respect to \(g^{2}\) and \(T \ne 0\),

$$\begin{aligned} S^\mathrm{stad}_{F}=\frac{1}{\gamma _{m}\mid \chi _{m}\mid }. \end{aligned}$$
(28a)

In view of the frequency and damping rate of the membrane resonator leads to the membrane susceptibility which is efficiently amplified in the force noise spectral density can be significantly reduced which improves the force sensitivity in CQNC condition.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tesfahannes, T.G., Tsanger, M.M. Quantum force sensing using backaction noise suppression in optomechanical system. J Opt 50, 35–45 (2021). https://doi.org/10.1007/s12596-020-00654-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12596-020-00654-y

Keywords

Navigation