Skip to main content

Advertisement

Log in

Two-layer vertical welding of glasses by femtosecond laser through galvo scanner

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

We demonstrated two-layer vertical welding of fused silica by femtosecond laser through galvo scanner. Promising approaches to a well-known technique of glasses welding by femtosecond laser were presented, which provided us efficient ways to draw welding route without programming through galvo scanner, gravitational effects on the welding direction by vertical welding and realized two-layer welding at very short intervals to refine microstructure and increase bonding strength in bonding zone. Under the same parameters condition, we found that the maximum joining strength as large as 80.26 MPa could be obtained in two-layer vertical welding through galvo scanner, which exceeded quadruple of one-layer horizontal welding focused by objective lens. Compared with one-layer welding, more uniform and fine microstructure can be obtained in bonding region by two-layer welding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. T. Tamaki, W. Watanabe, J. Nishii, K. Itoh, Welding of transparent materials using femtosecond laser pulses. Jpn. J. Appl. Phys. 44(22), L687–L689 (2005)

    Article  ADS  Google Scholar 

  2. W. Watanabe, S. Onda, T. Tamaki, K. Itoh, J. Nishii, Space-selective laser joining of dissimilar transparent materials using femtosecond laser pulses. Appl. Phys. Lett. 89(2), 1726 (2006)

    Article  Google Scholar 

  3. W. Watanabe, S. Onda, T. Tamaki, K. Itoh, Direct joining of glass substrates by 1 kHz femtosecond laser pulses. Appl. Phys. B 87(1), 85–89 (2007)

    Article  ADS  Google Scholar 

  4. S.M. Eaton, H. Zhang, M.L. Ng, J. Li, W.J. Chen, S. Ho, P.R. Herman, Transition from thermal diffusion to heat accumulation in high repetition rate femtosecond laser writing of buried optical waveguides. Opt. Express 16(13), 9443–9458 (2008)

    Article  ADS  Google Scholar 

  5. C.B. Schaffer, J.F. García, E. Mazur, Bulk heating of transparent materials using a high-repetition-rate femtosecond laser. Appl. Phys. A 76(3), 351–354 (2003)

    Article  ADS  Google Scholar 

  6. K. Itoh, T. Tamaki, Ultrafast laser microwelding for transparent and heterogeneous materials, in Proceedings of Spie, vol. 6881 (2008)

  7. S. Richter, F. Zimmermann, S. Döring, A. Tünnermann, S. Nolte, Ultrashort high repetition rate exposure of dielectric materials: laser bonding of glasses analyzed by micro-Raman spectroscopy. Appl. Phys. A 110(1), 9–15 (2013)

    Article  ADS  Google Scholar 

  8. I. Miyamoto, K. Cvecek, Y. Okamoto, M. Schmidt, Internal modification of glass by ultrashort laser pulse and its application to microwelding. Appl. Phys. A 114(1), 187–208 (2014)

    Article  ADS  Google Scholar 

  9. K. Cvecek, R. Odato, S. Dehmel, I. Miyamoto, M. Schmidt, Gap bridging in joining of glass using ultra short laser pulses. Opt. Express 23(5), 5681–5693 (2015)

    Article  ADS  Google Scholar 

  10. S. Richter, F. Zimmermann, A. Tünnermann, S. Nolte, Laser welding of glasses at high repetition rates—Fundamentals and prospects. Opt. Laser Technol. 83, 59–66 (2016)

    Article  ADS  Google Scholar 

  11. H. Tan, J.A. Duan, One-step femtosecond laser welding and internal machining of three glass substrates. Appl. Phys. A 123(5), 377 (2017)

    Article  ADS  Google Scholar 

  12. K. Itoh, W. Watanabe, S. Nolte, C.B. Schaffer, Ultrafast processes for bulk modification of transparent materials. MRS Bull. 31(8), 620–625 (2006)

    Article  Google Scholar 

  13. Y. Kim, J. Choi, Y. Lee, T. Kim, D. Kim, W. Jang, K.S. Lim, I.B. Sohn, J. Lee, Femtosecond laser bonding of glasses and ion migration in the interface. Appl. Phys. A 101(1), 147–152 (2010)

    Article  ADS  Google Scholar 

  14. S. Richter, S. Döring, A. Tünnermann, S. Nolte, Bonding of glass with femtosecond laser pulses at high repetition rates. Appl. Phys. A 103(2), 257–261 (2011)

    Article  ADS  Google Scholar 

  15. C.B. Schaffer, A. Brodeur, E. Mazur, Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses. Meas. Sci. Technol. 12(11), 1784–1794 (2001)

    Article  ADS  Google Scholar 

  16. Y. Shimotsuma, K. Hirao, P.G. Kazansky, J. Qiu, Three-Dimensional micro- and nano-fabrication in transparent materials by femtosecond laser. Jpn. J. Appl. Phys. Part 44(7A), 4735–4748 (2005)

    Article  ADS  Google Scholar 

  17. K. Sugioka, Y. Cheng, Femtosecond laser three-dimensional micro- and nanofabrication. J. Appl. Phys. 1(4), 041303 (2014)

    Google Scholar 

  18. T. Tamaki, W. Watanabe, and K. Itoh, Laser micro-welding of silicon and borosilicate glass using nonlinear absorption effect induced by 1558-nm femtosecond fiber laser pulses, in Proceedings of Spie, vol. 6460, pp. 646018–646018–646017 (2007)

  19. H. Tan, J.A. Duan, Welding of glasses in optical and partial-optical contact via focal position adjustment of femtosecond-laser pulses at moderately high repetition rate. Appl. Phys. A 123(7), 481 (2017)

    Article  ADS  Google Scholar 

  20. H. Tan, Y.X. Zhang, Y.X. Liu, X.Q. Fu, ANSYS workbench simulation of glass welding by femtosecond laser pulses. Infrared Phys. Tech. 98(2019), 334–340 (2019)

    Article  ADS  Google Scholar 

  21. W. Watanabe, Y. Li, K. Itoh, Ultrafast laser micro-processing of transparent material. Opt. Laser Technol. 78, 52–61 (2016)

    Article  ADS  Google Scholar 

  22. L. Rayleigh, Optical contact. Nature 139, 781–783 (1937)

    Article  ADS  Google Scholar 

  23. I. Miyamoto, J. Strauss, K. Cvecek, M. Schmidt, M. Wolf, T. Frick, Sample preparation method for glass welding by ultrashort laser pulses yields higher seam strength. Appl. Opt. 50(13), 1941–1944 (2011)

    Article  ADS  Google Scholar 

  24. I. Alexeev, Characterization of shear strength and bonding energy of laser pro-duced welding seams in glass. J. Laser Micro 7(3), 279–283 (2012)

    Article  Google Scholar 

  25. Z. Tang, T. Shi, G. Liao, S. Liu, Modeling the formation of spontaneous wafer direct bonding under low temperature. Microelectron. Eng. 85(8), 1754–1757 (2008)

    Article  Google Scholar 

  26. K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, Photowritten optical waveguides in various glasses with ultrashort pulse laser. Appl. Phys. Lett. 71(23), 3329–3331 (1998)

    Article  ADS  Google Scholar 

  27. L. Sudrie, M. Franco, B. Prade, A. Mysyrowicz, Writing of permanent birefringent microlayers in bulk fused silica with femtosecond laser pulses. Opt. Commun. 171(4–6), 279–284 (1999)

    Article  ADS  Google Scholar 

  28. Y. Shimotsuma, P.G. Kazansky, J. Qiu, K. Hirao, Self-organized nanogratings in glass irradiated by ultrashort light pulses. Phys. Rev. Lett. 91(24), 247405 (2003)

    Article  ADS  Google Scholar 

  29. C. Hnatovsky, R.S. Taylor, P.P. Rajeev, E. Simova, V.R. Bhardwaj, D.M. Rayner, P.B. Corkum, Pulse duration dependence of femtosecond-laser-fabricated nanogratings in fused silica. Appl. Phys. Lett. 87(1), 1729 (2005)

    Article  Google Scholar 

  30. S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E.G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, V.T. Tikhonchuk, Laser-induced microexplosion confined in the bulk of a sapphire crystal: evidence of multimegabar pressures. Phys. Rev. Lett. 96(16), 166101 (2006)

    Article  ADS  Google Scholar 

  31. K.M. Davis, K. Miura, N. Sugimoto, K. Hirao, Writing waveguides in glass with a femtosecond laser. Opt. Lett. 21(21), 1729–1731 (1996)

    Article  ADS  Google Scholar 

  32. J.A. Armstrong, N. Bloembergen, J. Ducuing, P.S. Pershan, Interactions between light waves in a nonlinear dielectric. Phys. Rev. 127(6), 1918–1939 (1962)

    Article  ADS  Google Scholar 

  33. W.T. Welford, The principles of nonlinear optics. J. Mod. Opt. 21(4), 400 (1985)

    Google Scholar 

  34. I. Fanderlík, Optical properties of glass. Opt. Laser Technol. 17(1), 50 (1983)

    Article  ADS  Google Scholar 

  35. S.C. Huh, J.S. Lee, G.N. Kim, W.J. Park, J.S. Park, C.H. Park, A study on evaluation of residual stress by multilayer welding. Int. J. Mod. Phys. B 25(31), 1106678 (2011)

    Article  Google Scholar 

  36. J. Pascal, A. Simar, and R. C. Van Der, Method for welding at least two layers, Free Patents Online (2015)

Download references

Acknowledgements

This research was supported by Research start-up funds of DGUT (The Mechanism and Intelligent Manufacturing of Glass Welding by Femtosecond Laser) (GC300501-098); Guangdong Provincial Key Platforms and Major Scientific Research Projects in Colleges and Universities featured innovation programs (The Research of Coupling Mechanism of Thermal-mechanical-magnetic and High-performance Manufacturing of Glass Miro-nano Welding by Femtosecond Laser Pulses) (2018KTSCX228); The Development of Society and Technology Project in Dongguan City (The Manufacturing of Micro-pore and Multicolor Eco-friendly Glass Welding by Femtosecond Laser) (2019507140179); China Scholarship Council (202008440014); The Project of Rural Technical Task Force of Guangdong Province in 2020 (KTP20200241); The Open-ended Project of a New-type Integration and Development of Cities and Towns Research Institute in Dongguan City (The Manufacturing of Ecological and Environmental Multilayer Glass and its Applied Research of in Greenhouse) (Grant No., Pending).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua Tan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, H., Zhang, Y., Liu, Y. et al. Two-layer vertical welding of glasses by femtosecond laser through galvo scanner. J Opt 49, 408–415 (2020). https://doi.org/10.1007/s12596-020-00635-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12596-020-00635-1

Keywords

Navigation