Skip to main content

Slope matched highly birefringent hybrid dispersion compensating fiber over telecommunication bands with low confinement loss


This article reveals a best possible design for hybrid dispersion compensating fiber with high birefringence established on modified broadband compensating structure through S, C and L telecommunication bands. The simulation outcome exhibits relatively higher birefringence of 3.76 × 10−2 at wavelength of 1550 nm. The suggested fiber also has dispersion compensation characteristics in an inclusive series of wavelengths which covers 1400–1625 nm. The reported design can achieve dispersion quantity of − 606 ps/(nm·km) at 1550 nm effective wavelength. The reported fiber design matches the relative dispersion slope 0.003694 nm−1 similar to single-mode fiber at 1550 nm operating wavelength. This fiber demonstrates negatively flattened effective dispersion of − 2.703 ± 0.734 ps/(nm·km) within 180 nm flat band ranging from 1460 to 1640 nm wavelength. It is also convenient to optical high bit rate communication systems. The low confinement loss is found 3.756 × 10−10 dB/m at the operating wavelength. This design also achieves highly nonlinear coefficient of 50.34 W−1 km−1. In some cases, it can also be used in sensing applications.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8


  1. P.S.J. Russell, Photonic-crystal fibers. J. Lightw. Technol. 24(12), 4729–4749 (2006)

    Article  ADS  Google Scholar 

  2. M.S. Habib et al., Microstructure holey fibers as wideband dispersion compensating media for high speed transmission system. Optik 124(21), 4984–4988 (2013)

    Article  ADS  Google Scholar 

  3. L. Gruner-Nielsen, M. Wandel, P. Kristensen et al., Dispersion-compensating fibers. J. Lightw. Technol. 23(11), 3566–3579 (2005)

    Article  ADS  Google Scholar 

  4. K. Saitoh, M. Koshiba, T. Hasegawa, E. Sasaoka, Chromatic dispersion control in photonic crystal fibers: application to ultra-flattened dispersion. Opt. Exp. 11(8), 843 (2003)

    Article  ADS  Google Scholar 

  5. J. Laegsgaard, S.E. BarkouLibori, K. Hougaard et al., Dispersion properties of photonic crystal fibers—issues and opportunities, in MRS Proceedings, vol. 797 (2003)

  6. L. Grüner-Nielsen, S.N. Knudsen, B. Edvold et al., Dispersion compensating fibers. Opt. Fiber Technol. 6(2), 164–180 (2000)

    Article  ADS  Google Scholar 

  7. S.G. Li, X.D. Liu, L.T. Hou, Numerical study on dispersion compensating property in photonic crystal fibers. Acta Phys Sin 53, 1880–1886 (2004)

    Google Scholar 

  8. X. Zhao, G. Zhou, S. Li et al., Photonic crystal fiber for dispersion compensation. Appl. Opt. 47(28), 5190 (2008)

    Article  ADS  Google Scholar 

  9. T. Zhong-Wei, N. Ti-Gang, L. Yan, T. Zhi, J. Shui-Sheng, Suppression of the interactions between fiber gratings used as dispersion compensators in dense wavelength-division multiplexing systems. Chin. Phys. 15(8), 1819–1823 (2006)

    Article  Google Scholar 

  10. Y. Ni, L. Zhang, L. An, J. Peng, C.C. Fan, Dual-core photonic crystal fiber for dispersion compensation. IEEE Photon. Technol. Lett. 16, 1516–1518 (2004)

    Article  ADS  Google Scholar 

  11. J. Ju, J. Wei, M.S. Demokan, Properties of a highly birefringent photonic crystal fiber. IEEE Photonics Technol. Lett. 15(10), 1375–1377 (2003)

    Article  ADS  Google Scholar 

  12. S.F. Kaijage, Y. Namihira, N.H. Hai, F. Begum, S.M.A. Razzak, T. Kinjo, K. Miyagi, N. Zou, Broadband dispersion compensating octagonal photonic crystal fibre for optical communication applications. Jpn. J. Appl. Phys. 48(5), 052401 (2009)

    Article  ADS  Google Scholar 

  13. M. Selim Habib, M. Samiul Habib, S.M. Abdur Razzak, M. Anwar Hossain, Proposal for highly birefringent broadband dispersion compensating octagonal photonic crystal fiber. Opt. Fibre Technol. 19(5), 461–467 (2013)

    Article  ADS  Google Scholar 

  14. S.F. Kaijage, Y. Namihira, N.H. Hai, F. Begum, S.A. Razzak, T. Kinjo, K. Miyagi, N. Zou, Broadband dispersion compensating octagonal photonic crystal fiber for optical communication applications. Jpn. J. Appl. Phys. 48(5R), 052401 (2009)

    Article  ADS  Google Scholar 

  15. A. Agrawal, N. Kejalakshmy, J. Chen, B.M.A. Rahman, K.T.V. Grattan, Golden spiral photonic crystal fiber: polarization and dispersion properties. Opt. Lett. 33(22), 2716 (2008)

    Article  ADS  Google Scholar 

  16. A. Halder, Highly birefringent photonic crystal fiber for dispersion compensation over E + S+C + L communication bands, in 2016 5th International Conference on Informatics, Electronics and Vision (ICIEV) (2016)

  17. M.S. Ali, K.M. Nasim, R. Ahmad, M.A.G. Khan, M.S. Habib, A defected core highly birefringent dispersion compensating photonic crystal fiber, in 2013 2nd International Conference on Advances in Electrical Engineering (ICAEE) (2013)

  18. M.S. Habib, M.S. Rana, M. Moniruzzaman, M.S. Ali, N. Ahmed, Highly birefringent broadbanddispersion-compensating photonic crystal fiber over the E + S+C + L+U wavelength bands. Opt. Fibre Technol. 20(5), 527–532 (2014)

    Article  ADS  Google Scholar 

  19. M.A. Islam, R. Ahmad, M.S. Ali, K.M. Nasim, Proposal for highly residual dispersion compensating defected core decagonal photonic crystal fiber over S + C+L + U wavelength bands. Opt. Eng. 53(7), 076106 (2014)

    Article  ADS  Google Scholar 

  20. S. Ali, N. Ahmed, M. Islam, S.A. Aljunid et al., A high birefringent PCF with RDS matched dispersion compensation over S + C+L communication bands, in 2016 3rd International Conference on Electronic Design (ICED) (2016)

  21. N.A. Issa, M.A. van Eijkelenborg, M. Fellew et al., Fabrication and study of microstructured optical fibres with elliptical holes. Opt. Lett. 29(12), 1336 (2004)

    Article  ADS  Google Scholar 

  22. F. Quiñónez, J.W. Menezes, L. Cescato, V.F. Rodriguez-Esquerre, H. Hernandez-Figueroa, R.D. Mansano, Band gap of hexagonal 2D photonic crystals with elliptical holes recorded by interference lithography. Opt. Exp. 14(11), 4873 (2006)

    Article  ADS  Google Scholar 

  23. R.T. Bise, D.J. Trevor, Sol-gel derived microstructured fiber: fabrication and characterization, in OFC/NFOEC Technical Digest. Optical Fibre Communication Conference (2005)

  24. G.S. Wiederhecker, C.M.B. Cordeiro, F. Couny, F. Benabid, S.A. Maier, J.C. Knight, C.H.B. Cruz, H.L. Fragnito, Field enhancement within an optical fibre with a subwavelength air core. Nat. Photonics 1(2), 115–118 (2007)

    Article  ADS  Google Scholar 

  25. M.F.H. Arif, M.J.H. Biddut, Enhancement of relative sensitivity of photonic crystal fiber with high birefringence and low confinement loss. Optik Int. J. Light Electron Opt. 131, 697e704 (2017)

    Article  Google Scholar 

  26. K. Ahmed, M.S. Islam, B.K. Paul, Design and numerical analysis: effect of core and cladding area on hybrid hexagonal microstructure optical fiber in environment pollution sensing applications. Karbala Int. J. Mod. Sci. 3(1), 29–38 (2017)

    Article  Google Scholar 

  27. Y. Ruan, H. Ebendorff-Heidepriem, V. Afshar, T.M. Monro, Light confinement within nanoholes in nanostructured optical fibers. Opt. Exp. 18(25), 26018–26026 (2010)

    Article  ADS  Google Scholar 

  28. K. Saitoh, M. Koshiba, Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: application to photonic crystal fibres. IEEE J. Quantum Electron. 38(7), 927–933 (2002)

    Article  ADS  Google Scholar 

  29. A.M. Niels, Effective area of photonic crystal fibers. Opt. Exp. 10, 341–348 (2002)

    Article  Google Scholar 

  30. T.A. Birks, D. Mogilevtsev, J.C. Knight, P.S.J. Russell, Dispersion compensation using single material fibres. IEEE Photonics Technol. Lett. 11(6), 674–676 (1999)

    Article  ADS  Google Scholar 

  31. M.S. Habib, M.S. Habib, M.I. Hasan, S.M.A. Razzak, Tailoring polarization maintaining broadband residual dispersion compensating octagonal photonic crystal fibres. Opt. Eng. 52(11), 116111 (2013)

    Article  ADS  Google Scholar 

  32. A.W. Snyder, J.D. Love, Optical waveguide theory (Springer, Berlin, 1984)

    Book  Google Scholar 

  33. T.A. Birks, J.C. Knight, P.S.J. Russell, Endlessly single-mode photonic crystal fiber. Opt. Lett. 22(13), 961 (1997)

    Article  ADS  Google Scholar 

  34. Y. Dong, X. Bao, L. Chen, Distributed temperature sensing based on birefringence effect on transient Brillouin grating in a polarization-maintaining photonic crystal fiber. Opt. Lett. 34(17), 2590 (2009)

    Article  ADS  Google Scholar 

  35. S.F. Kaijage, Y. Namihira, N.H. Hai et al., Multiple defect-core hexagonal photonic crystal fiber with flattened dispersion and polarization maintaining properties. Opt. Rev. 15(1), 31–37 (2008)

    Article  Google Scholar 

  36. M. Napierala et al., Photonic crystal fiber with large mode area and characteristic bending properties. IEEE Photonics Technol. Lett. 24(16), 1409–1411 (2012)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Amit Halder.

Ethics declarations

Conflict of interest

The authors declare that they no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Halder, A. Slope matched highly birefringent hybrid dispersion compensating fiber over telecommunication bands with low confinement loss. J Opt 49, 187–195 (2020).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: