Abstract
This article reveals a best possible design for hybrid dispersion compensating fiber with high birefringence established on modified broadband compensating structure through S, C and L telecommunication bands. The simulation outcome exhibits relatively higher birefringence of 3.76 × 10−2 at wavelength of 1550 nm. The suggested fiber also has dispersion compensation characteristics in an inclusive series of wavelengths which covers 1400–1625 nm. The reported design can achieve dispersion quantity of − 606 ps/(nm·km) at 1550 nm effective wavelength. The reported fiber design matches the relative dispersion slope 0.003694 nm−1 similar to single-mode fiber at 1550 nm operating wavelength. This fiber demonstrates negatively flattened effective dispersion of − 2.703 ± 0.734 ps/(nm·km) within 180 nm flat band ranging from 1460 to 1640 nm wavelength. It is also convenient to optical high bit rate communication systems. The low confinement loss is found 3.756 × 10−10 dB/m at the operating wavelength. This design also achieves highly nonlinear coefficient of 50.34 W−1 km−1. In some cases, it can also be used in sensing applications.
This is a preview of subscription content, access via your institution.








References
P.S.J. Russell, Photonic-crystal fibers. J. Lightw. Technol. 24(12), 4729–4749 (2006)
M.S. Habib et al., Microstructure holey fibers as wideband dispersion compensating media for high speed transmission system. Optik 124(21), 4984–4988 (2013)
L. Gruner-Nielsen, M. Wandel, P. Kristensen et al., Dispersion-compensating fibers. J. Lightw. Technol. 23(11), 3566–3579 (2005)
K. Saitoh, M. Koshiba, T. Hasegawa, E. Sasaoka, Chromatic dispersion control in photonic crystal fibers: application to ultra-flattened dispersion. Opt. Exp. 11(8), 843 (2003)
J. Laegsgaard, S.E. BarkouLibori, K. Hougaard et al., Dispersion properties of photonic crystal fibers—issues and opportunities, in MRS Proceedings, vol. 797 (2003)
L. Grüner-Nielsen, S.N. Knudsen, B. Edvold et al., Dispersion compensating fibers. Opt. Fiber Technol. 6(2), 164–180 (2000)
S.G. Li, X.D. Liu, L.T. Hou, Numerical study on dispersion compensating property in photonic crystal fibers. Acta Phys Sin 53, 1880–1886 (2004)
X. Zhao, G. Zhou, S. Li et al., Photonic crystal fiber for dispersion compensation. Appl. Opt. 47(28), 5190 (2008)
T. Zhong-Wei, N. Ti-Gang, L. Yan, T. Zhi, J. Shui-Sheng, Suppression of the interactions between fiber gratings used as dispersion compensators in dense wavelength-division multiplexing systems. Chin. Phys. 15(8), 1819–1823 (2006)
Y. Ni, L. Zhang, L. An, J. Peng, C.C. Fan, Dual-core photonic crystal fiber for dispersion compensation. IEEE Photon. Technol. Lett. 16, 1516–1518 (2004)
J. Ju, J. Wei, M.S. Demokan, Properties of a highly birefringent photonic crystal fiber. IEEE Photonics Technol. Lett. 15(10), 1375–1377 (2003)
S.F. Kaijage, Y. Namihira, N.H. Hai, F. Begum, S.M.A. Razzak, T. Kinjo, K. Miyagi, N. Zou, Broadband dispersion compensating octagonal photonic crystal fibre for optical communication applications. Jpn. J. Appl. Phys. 48(5), 052401 (2009)
M. Selim Habib, M. Samiul Habib, S.M. Abdur Razzak, M. Anwar Hossain, Proposal for highly birefringent broadband dispersion compensating octagonal photonic crystal fiber. Opt. Fibre Technol. 19(5), 461–467 (2013)
S.F. Kaijage, Y. Namihira, N.H. Hai, F. Begum, S.A. Razzak, T. Kinjo, K. Miyagi, N. Zou, Broadband dispersion compensating octagonal photonic crystal fiber for optical communication applications. Jpn. J. Appl. Phys. 48(5R), 052401 (2009)
A. Agrawal, N. Kejalakshmy, J. Chen, B.M.A. Rahman, K.T.V. Grattan, Golden spiral photonic crystal fiber: polarization and dispersion properties. Opt. Lett. 33(22), 2716 (2008)
A. Halder, Highly birefringent photonic crystal fiber for dispersion compensation over E + S+C + L communication bands, in 2016 5th International Conference on Informatics, Electronics and Vision (ICIEV) (2016)
M.S. Ali, K.M. Nasim, R. Ahmad, M.A.G. Khan, M.S. Habib, A defected core highly birefringent dispersion compensating photonic crystal fiber, in 2013 2nd International Conference on Advances in Electrical Engineering (ICAEE) (2013)
M.S. Habib, M.S. Rana, M. Moniruzzaman, M.S. Ali, N. Ahmed, Highly birefringent broadbanddispersion-compensating photonic crystal fiber over the E + S+C + L+U wavelength bands. Opt. Fibre Technol. 20(5), 527–532 (2014)
M.A. Islam, R. Ahmad, M.S. Ali, K.M. Nasim, Proposal for highly residual dispersion compensating defected core decagonal photonic crystal fiber over S + C+L + U wavelength bands. Opt. Eng. 53(7), 076106 (2014)
S. Ali, N. Ahmed, M. Islam, S.A. Aljunid et al., A high birefringent PCF with RDS matched dispersion compensation over S + C+L communication bands, in 2016 3rd International Conference on Electronic Design (ICED) (2016)
N.A. Issa, M.A. van Eijkelenborg, M. Fellew et al., Fabrication and study of microstructured optical fibres with elliptical holes. Opt. Lett. 29(12), 1336 (2004)
F. Quiñónez, J.W. Menezes, L. Cescato, V.F. Rodriguez-Esquerre, H. Hernandez-Figueroa, R.D. Mansano, Band gap of hexagonal 2D photonic crystals with elliptical holes recorded by interference lithography. Opt. Exp. 14(11), 4873 (2006)
R.T. Bise, D.J. Trevor, Sol-gel derived microstructured fiber: fabrication and characterization, in OFC/NFOEC Technical Digest. Optical Fibre Communication Conference (2005)
G.S. Wiederhecker, C.M.B. Cordeiro, F. Couny, F. Benabid, S.A. Maier, J.C. Knight, C.H.B. Cruz, H.L. Fragnito, Field enhancement within an optical fibre with a subwavelength air core. Nat. Photonics 1(2), 115–118 (2007)
M.F.H. Arif, M.J.H. Biddut, Enhancement of relative sensitivity of photonic crystal fiber with high birefringence and low confinement loss. Optik Int. J. Light Electron Opt. 131, 697e704 (2017)
K. Ahmed, M.S. Islam, B.K. Paul, Design and numerical analysis: effect of core and cladding area on hybrid hexagonal microstructure optical fiber in environment pollution sensing applications. Karbala Int. J. Mod. Sci. 3(1), 29–38 (2017)
Y. Ruan, H. Ebendorff-Heidepriem, V. Afshar, T.M. Monro, Light confinement within nanoholes in nanostructured optical fibers. Opt. Exp. 18(25), 26018–26026 (2010)
K. Saitoh, M. Koshiba, Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: application to photonic crystal fibres. IEEE J. Quantum Electron. 38(7), 927–933 (2002)
A.M. Niels, Effective area of photonic crystal fibers. Opt. Exp. 10, 341–348 (2002)
T.A. Birks, D. Mogilevtsev, J.C. Knight, P.S.J. Russell, Dispersion compensation using single material fibres. IEEE Photonics Technol. Lett. 11(6), 674–676 (1999)
M.S. Habib, M.S. Habib, M.I. Hasan, S.M.A. Razzak, Tailoring polarization maintaining broadband residual dispersion compensating octagonal photonic crystal fibres. Opt. Eng. 52(11), 116111 (2013)
A.W. Snyder, J.D. Love, Optical waveguide theory (Springer, Berlin, 1984)
T.A. Birks, J.C. Knight, P.S.J. Russell, Endlessly single-mode photonic crystal fiber. Opt. Lett. 22(13), 961 (1997)
Y. Dong, X. Bao, L. Chen, Distributed temperature sensing based on birefringence effect on transient Brillouin grating in a polarization-maintaining photonic crystal fiber. Opt. Lett. 34(17), 2590 (2009)
S.F. Kaijage, Y. Namihira, N.H. Hai et al., Multiple defect-core hexagonal photonic crystal fiber with flattened dispersion and polarization maintaining properties. Opt. Rev. 15(1), 31–37 (2008)
M. Napierala et al., Photonic crystal fiber with large mode area and characteristic bending properties. IEEE Photonics Technol. Lett. 24(16), 1409–1411 (2012)
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Halder, A. Slope matched highly birefringent hybrid dispersion compensating fiber over telecommunication bands with low confinement loss. J Opt 49, 187–195 (2020). https://doi.org/10.1007/s12596-020-00606-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12596-020-00606-6