Skip to main content

Surface plasmon resonance biosensor-based dual-core photonic crystal fiber: design and analysis

Abstract

A finite element analysis of biosensor-based dual-core photonic crystal fiber is conducted using surface plasmon resonance model and is presented in this article. Calculated wavelength sensitivity of the sensor is around 10,000 nm/RIU and 5000 nm/RIU for x-polarization and y-polarization, respectively, when analyte refractive index is 1.34. Amplitude sensitivity for x-polarization and y-polarization is 334 RIU−1 and 394 RIU−1, respectively. Resolution for both polarizations is 2 × 10–5 RIU. Consequently, the proposed biosensor can detect the low-refractive-index biochemical analyte at different wavelengths.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    M. Morshed, M. Imran Hassan, T.K. Roy, M.S. Uddin, S.M. Abdur Razzak, Microstructure core photonic crystal fiber gas sensing Applications. Appl. Opt. 54(29), 8637 (2015)

    ADS  Article  Google Scholar 

  2. 2.

    K. Ahmed, M. Morshed, Design and Numerical analysis of microstructure core octagonal photonic crystal fiber for sensing applications. Sens. Bio-Sen. Res. 7, 1–6 (2016)

    Article  Google Scholar 

  3. 3.

    J. Homola, Present and future of surface plasmon resonance biosensors. Anal. Bioanal. Chem. 377, 528–539 (2003)

    Article  Google Scholar 

  4. 4.

    R. Otupiri, E. Akowuah, S. Haxha, H. Ademgil, F. AbdelMalek, A. Aggoun, A novel birefrigent photonic crystal fibre surface plasmon resonance biosensor. IEEE Photon. J. 6, 1–11 (2014)

    Article  Google Scholar 

  5. 5.

    J.G. Ortega-Mendoza, A. Padilla-Vivanco, C. Toxqui-Quitl, P. Zaca-Morán, D. Villegas-Hernández, F. Chávez, Optical fiber sensor based on localized surface plasmon resonance using silver nanoparticles photodeposited on the optical fiber end. Sensors 14, 18701–18710 (2014)

    Article  Google Scholar 

  6. 6.

    E.K. Akowuah, T. Gorman, H. Ademgil, S. Haxha, G.K. Robinson, J.V. Oliver, Numerical analysis of a photonic crystal fiber for biosensing applications. IEEE J. Quantum Electron. 48, 1403–1410 (2012)

    ADS  Article  Google Scholar 

  7. 7.

    A.A. Rifat, R. Ahmed, A.K. Yestisen, H. Butt, A. Sabouri, G.A. Mahdiraji, S.H. Yun, F.R. Adikan, Photonic crystal fiber based plasmonic sensors. Sens. Actuatoros B Chem. 243, 311–325 (2017)

    Article  Google Scholar 

  8. 8.

    M.R. Hasan, S. Akter, A.A. Rifat, S. Rana, K. Ahmed, R. Ahmed, D. Abbott, Spiral photonic crystal fiber based dual-polarized surface plasmon resonance biosensor. IEEE Sens. J. 18(1), 133–140 (2018)

    ADS  Article  Google Scholar 

  9. 9.

    A.A. Rifat et al., Surface Plasmon Resonance photonic crystal fiber biosensor: a practical approach. IEEE Photon. Technol. Lett. 27(15), 1628–1631 (2015)

    ADS  Article  Google Scholar 

  10. 10.

    M.Y. Mohd Noor et al., Optical humidity sensor based on air guided photonic crystal fiber. Photonic Sens. 2(3), 277–282 (2012)

    ADS  Article  Google Scholar 

  11. 11.

    S. Wabnitz, Broadband parametric amplification in photonic crystal fiber with two zero-dispersion wavelengths. J. Lightwave Technol. 24(4), 1732–1738 (2006)

    ADS  Article  Google Scholar 

  12. 12.

    Y. Yu et al., Some features of the photonic crystal fiber temperature sensor with liquid ethanol filling. Opt. Express 18(15), 15383 (2010)

    ADS  Article  Google Scholar 

  13. 13.

    H.Y. Fu et al., High pressure sensor based on photonic crystal fiber for downhole application. Appl. Opt. 49(14), 2639 (2010)

    ADS  Article  Google Scholar 

  14. 14.

    P. Russell, J. St, Photonic crystal fibers. Science 299, 358–362 (2003)

    ADS  Article  Google Scholar 

  15. 15.

    R.H. Ritchie, Plasma losses by fast electrons in thin films. Phys. Rev. 106(5), 874–881 (1957)

    ADS  MathSciNet  Article  Google Scholar 

  16. 16.

    A. Otto, Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection. Z. Phys. 216, 398–410 (1968)

    ADS  Article  Google Scholar 

  17. 17.

    E. Kretschmann, Radiative decay of non radiative surface plasmons excited by light. Z. Naturforschung A 23(12), 2135–2136 (1968)

    ADS  Article  Google Scholar 

  18. 18.

    R. Jorgenson, S. Yee, A fiber-optic chemical sensor based on surface plasmon resonance. Sens. Actuators B Chem. 12, 213–220 (1993)

    Article  Google Scholar 

  19. 19.

    B.D. Gupta, Surface plasmon resonance based fiber optic sensors, in Reviews in Plasmonics 2010, ed. by C. Geddes (Springer, Berlin, 2012), pp. 105–137

    Chapter  Google Scholar 

  20. 20.

    M.A. Schmidt, L.P. Sempere, H.K. Tyagi, C.G. Poulton, P.S.J. Russell, Waveguiding and plasmon resonances in two dimensional photonic lattices of gold and silver nanowires. Phys. Rev. B 77, 033417 (2008)

    ADS  Article  Google Scholar 

  21. 21.

    P. Zhang, J. Yao, H. Cui, Y. Lu, A surface plasmon resonance sensor based on a multi-core photonic crystal fiber. Optoelectron. Lett. 9, 342–345 (2013)

    ADS  Article  Google Scholar 

  22. 22.

    L. Chen, W.G. Zhang, Z. Zhang, Y.J. Liu, J. Sieg, L.Y. Zhang, Design for a single-polarization photonic crystal fiber wavelength splitter based on hybrid-Surface plasmon resonance. IEEE Photonics J. 21, 1–9 (2014)

    Google Scholar 

  23. 23.

    P. Li, J.L. Zhao, Polarization-dependent coupling in gold filled dual-core photonic crystal fibers. Opt. Express 21, 5232–5238 (2012)

    ADS  Article  Google Scholar 

  24. 24.

    Q. Liu, S.G. Li, H. Li, J. Zi, W. Zhang, Z.K. Fan, G.W. An, Y.J. Bao, Broadband single-polarization photonic crystal fiber based on surface plasmon resonance for polarization filter. Plasmonics 10, 1–9 (2015)

    Article  Google Scholar 

  25. 25.

    C. Liu, L. Yang, W. Su, F. Wang, T. Sun, Q. Liu, H. Mu, P.K. Chu, Numerical analysis of a photonic crystal fiber based on a surface plasmon resonance sensor with an annular analyte channel. Opt. Commun. 382, 162–166 (2017)

    ADS  Article  Google Scholar 

  26. 26.

    M. Liu, X. Yang, P. Shum, H. Yuan, High-sensitivity birefringent and single-layer coating photonic crystal fiber biosensor based on surface plasmon resonance. Appl. Opt. 57(8), 1883–1886 (2018)

    ADS  Article  Google Scholar 

  27. 27.

    A. Rifat, G.A. Mahdiraji, D.M. Chow, Y.G. Shee, R. Ahmed, F.R.M. Adikan, Photonic crystal fiber-based surface plasmon resonance sensor with selective analyte channels and graphene-silver deposited core. Sensors 15(5), 11499–11510 (2015)

    Article  Google Scholar 

  28. 28.

    M. Hautakorpi, M. Mattinen, H. Ludvigsen, Surface-plasmon-resonance sensor based on three-hole microstructured optical fiber. Opt. Express 16(12), 8427–8432 (2008)

    ADS  Article  Google Scholar 

  29. 29.

    A.A. Rifat, G.A. Mahdiraji, Y.G. Shee, M.J. Shawon, F.M. Adikan, A novel photonic crystal fiber biosensor using surface plasmon resonance. Procedia Eng. 140, 1–7 (2016)

    Article  Google Scholar 

  30. 30.

    J.N. Dash, R. Jha, SPR biosensor based on polymer PCF coated with conducting metal oxide. IEEE Photonics Technol. Lett. 26, 595–598 (2014)

    ADS  Article  Google Scholar 

  31. 31.

    M.R. Hasan, S. Akter, A.A. Rifat, S. Rana, S. Ali, A highly sensitive gold-coated photonic crystal fiber biosensor based on surface plasmon resonance. Photonics 4(1), 18 (2017)

    Article  Google Scholar 

  32. 32.

    S. Chakma, M.A. Khalek, B.K. Paul, K. Ahmed, M.R. Hasan, A.N. Bahar, Gold-coated photonic crystal fiber biosensor based on surface plasmon resonance: design and analysis. Sens. Bio-Sens. Res. 18, 7–12 (2018)

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to D. Rajeswari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Arunya Revathi, A., Rajeswari, D. Surface plasmon resonance biosensor-based dual-core photonic crystal fiber: design and analysis. J Opt 49, 163–167 (2020). https://doi.org/10.1007/s12596-020-00600-y

Download citation

Keywords

  • Photonic crystal fiber (PCF)
  • Surface plasmon resonance (SPR)
  • Biosensor
  • Finite element method (FEM)