Skip to main content
Log in

Use of optical Kerr medium for parametric generation of very low frequency electrical signal

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

Optical self-focusing and defocusing, optical switching activities and optical signal processing can be successfully done by using optical Kerr materials. Due to the nonlinear property of Kerr medium, this medium can be used to convert the frequency of the applied light signal passing through the medium. Here, in this paper, the authors propose a method of using optical Kerr medium for parametric generation of very low frequency electrical signal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. A. Chatterjee, S. Mukhopadhyay, A new method of obtaining an ultrashort optical pulse by the use of optical kerr material and a sawtooth optical pulse. Int. J. Electron. Commun. Technol. 6, 42–43 (2015)

    Google Scholar 

  2. A. Chatterjee, A. Biswas, S. Mukhopadhyay, Method of frequency conversion of Manchester encoded data from a Kerr type of nonlinear medium. J. Opt. 46, 415–419 (2017)

    Article  Google Scholar 

  3. J. Xu, X. Yu, W. Lu, F. Qu, N. Deng, Offset Manchester coding for rayleigh noise suppression in carrier distributed WDM-POMS. Opt. Commun. 346, 106–109 (2015)

    Article  ADS  Google Scholar 

  4. J. Leuuthold, C.-S. Bres, All-optical pulse shaping for highest spectral efficiency. Springer Ser. Opt. Sci. 194, 217–260 (2015)

    Article  Google Scholar 

  5. A.M. Cailean, B. Cagnea, L. Chassagne, Evaluation of the noise effects on visible light communications using Manchester and Miller coding, in Conference Proceedings, Development and Application System (DAS) (IEEE, 2014), pp. 85–89, 6842433. https://doi.org/10.1109/daa-s

  6. B. Chakraborty, S. Mukhopadhyay, Alternative approach of conducting phase-modulated all optical logic gates. Opt. Eng. 48, 035201 (2009)

    Article  ADS  Google Scholar 

  7. M. Vitek, I. Musevic, Nanosecond control and optical pulse shaping by stimulated emission depletion in a liquid crystal. Opt. Express 23, 16921–16932 (2015)

    Article  ADS  Google Scholar 

  8. S. Dhar, S. Mukhopadhyay, All optical implementation of ASCII by use of nonlinear material for optical encoding of necessary symbols. Opt. Eng. 44, 065201 (2005)

    Article  ADS  Google Scholar 

  9. D. Samanta, S. Mukhopadhyay, All-optical method for maintaining a fixed intensity level of a light signal in optical computation. Opt. Commun. 281, 4851–4853 (2008)

    Article  ADS  Google Scholar 

  10. S.K. Chandra, S. Biswas, S. Mukhopadhyay, Phase encoded all-optical reconfigurable integrated multilogic unit using phase information processing of four wave mixing in semiconductor optical amplifier. IET Optoelectron. 10, 1–6 (2016)

    Article  Google Scholar 

  11. S. Sen, S. Mukhopadhyay, Reduction of VP voltage of an electro-optic modulator by the oblique end cutting and multi-rotation. Opt. Laser Technol. 59, 19–23 (2014)

    Article  ADS  Google Scholar 

  12. S. Bhattacharya, S.N. Patra, S. Mukhopadhyay, An all optical prototype neuron based on optical Kerr material. Optik Int. J. Light Electron Opt. 126, 13–18 (2015)

    Article  Google Scholar 

  13. F.E. Robles, M.C. Fischer, W.S. Warren, Femtosecond pulse shaping enables detection of optical Kerr-effect (OKE) dynamics for molecular imaging. Opt. Lett. 39, 4788–4991 (2014)

    Article  ADS  Google Scholar 

  14. S. Biswas, S. Mukhopadhyay, All-Optical approach for conversion of a binary number having a fractional part to its decimal equivalent to three places of decimal using single system optical tree architecture. J. Opt. 43, 122–129 (2014)

    Article  Google Scholar 

  15. Y. Liu, F. Qin, F. Zhou, Q-b Meng, D-z Zhang, Z-y Li, Ultrafast optical switching in Kerr nonlinear photonic crystals. Front. Phys. Chin. 5, 220–244 (2010)

    Article  Google Scholar 

  16. Z.-Y. Li, Z.-M. Meng, Polystyrene Kerr nonlinear photonic crystals for building ultrafast optical switching and logic devices. J. Mater. Chem. C 2, 773–954 (2014)

    Article  Google Scholar 

  17. L. Brzozowski, E.H. Sargent, Azobenzenes for photonic network applications: third-order nonlinear optical properties. J. Mater. Sci.: Mater. Electron. 12, 483–489 (2001)

    Google Scholar 

  18. B. Sarkar, S. Mukhopadhyay, Optoelctronic scheme for generation of time bound low-frequency electronic signal using multi-passing of light. J. Opt. Commu. (2018). https://doi.org/10.1515/joc

    Article  Google Scholar 

  19. S. Mitra, S. Mukhopadhyay, An all optical scheme for implementing a NAND logic by dibit representation of squeezed states of light. J. Nonlinear Opt. Phys. Mater. 24, 1550048 (2015)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agnijita Chatterjee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chatterjee, A., Mukhopadhyay, S. Use of optical Kerr medium for parametric generation of very low frequency electrical signal. J Opt 48, 582–585 (2019). https://doi.org/10.1007/s12596-019-00570-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12596-019-00570-w

Keywords

Navigation