Skip to main content
Log in

Rank dependence of entanglement sudden death of a two-qubit system in a thermal reservoir

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

Entanglement sudden death and revival of entanglement are generic features of the evolution of entangled quantum systems interacting with a thermal reservoir. We investigated the evolution of mixed entangled states of different ranks of two spatially separated qubits interacting through dipole forces and in contact with a common finite temperature photon bath. For a fixed initial concurrence, lower rank initial states exhibit ESD at later times. ESD time increases with increase in initial concurrence for a given mean number of photons, N in a bath. Further, ESD time decreases with increase in N. The choice of low rank mixed state with higher entanglement and low N of the bath can delay or even avoid ESD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Z. Ficek, R. Tanas, Entangled states and non-classical effects in two atom systems. Phys. Rep. 372, 369–443 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  2. Z. Ficek, R. Tanas, Entanglement induced by spontaneous emission in spatially extended two atom systems. J. Mod. Opt. 50, 2765–2779 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  3. R. Tanas, Z. Ficek, Stationary two atom entanglement induced by non-classical two photon correlations. J. Opt. B: Quant. Semiclass. Opt. 6, S610–S617 (2004)

    Article  ADS  Google Scholar 

  4. T. Yu, J.H. Eberly, Finite-time disentanglement via spontaneous emission. Phys. Rev. Lett. 93, 140404 (2004)

    Article  ADS  Google Scholar 

  5. M.P. Almeida, F. de Melo, M. Hor-Meyll, A. Salles, S.P. Walborn, P.H.S. Ribeiro, L. Davidovich, Environment-induced sudden death of entanglement. Science 316, 579 (2007)

    Article  ADS  Google Scholar 

  6. J. Laurat, K.S. Choi, H. Deng, C.W. Chou, H.J. Kimble, Heralded entanglement between atomic ensembles: preparation, decoherence and scaling. Phys. Rev. Lett. 99, 180504 (2007)

    Article  ADS  Google Scholar 

  7. Z. Ficek, R. Tanas, Dark periods and revivals of entanglement in a two-qubit system. Phys. Rev. A 74, 024304 (2006)

    Article  ADS  Google Scholar 

  8. L. Xiang-Ping, F. Mao-Fa, Z. Xiao-Juan, C. Jian-Wu, Quantum entanglement in a system of two spatially separated atoms coupled to the thermal reservoir. Chin. Phys. Lett. 23, 3138 (2006)

    Article  ADS  Google Scholar 

  9. R. Tahira, M. Ikram, T. Azim, M.S. Zubairy, Entanglement dynamics of a pure bipartite system in dissipative environments. J. Phys. B: At. Mol. Opt. Phys. 41, 205501 (2008)

    Article  ADS  Google Scholar 

  10. L. Xiang- ping, F. Mao-Fa, C. Jian-Wu, Z. Xiao-Juan, The entanglement of two dipole-dipole coupled atoms interacting with a thermal field via a two-photon process. Chin. Phys. B 17, 2137 (2008)

    Article  ADS  Google Scholar 

  11. W. Cui, Z. Xi, Y. Pan, The entanglement dynamics of the bipartite quantum system: toward entanglement sudden death. J. Phys. A: Math. Theor. 42, 025303 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  12. R. Tanas, Z. Ficek, Sudden birth and death of entanglement of two atoms in a finite temperature reservoir. Phys. Scr. T140, 014037(4pp) (2010)

    Article  ADS  Google Scholar 

  13. Z. Ficek, R. Tanas, Sudden birth and sudden death of entanglement. J. Comput. Methods Sci. Eng. 10, 265–289 (2010)

    MathSciNet  MATH  Google Scholar 

  14. R. Tahira, M. Ikram, M.S. Zubairy, Entanglement dynamics of spatially close bipartite atomic systems in thermal environment, Opt. Commun. 284, 3643–3648 (2011)

    Article  ADS  Google Scholar 

  15. W. Lee, M. Kim, H. Jo, Y. Song, J. Ahn, Coherent and dissipative dynamics of entangled few-body systems of Rydberg atoms. Phys. Rev. A 99, 043404 (2019)

    Article  ADS  Google Scholar 

  16. M.I. Shaukat, E.V. Castro, H. Teras, Entanglement sudden death and revival in quantum dark-soliton qubits. Phys. Rev. A 98, 022319 (2018)

    Article  ADS  Google Scholar 

  17. S. Hill, W.K. Wootters, Entanglement of a pair of quantum bits. Phys. Rev. Lett. 78, 5022 (1997)

    Article  ADS  Google Scholar 

  18. W.K. Wootters, Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245 (1998)

    Article  ADS  Google Scholar 

  19. R.F. Werner, Quantum states with Einstein–Podolsky–Rosen correlations admitting a hidden-variable model. Phys. Rev. A. 40, 4277 (1989)

    Article  ADS  Google Scholar 

  20. S. Adhikari, A.S. Majumdar, S. Roy, B. Ghosh, N. Nayak, Teleportation via maximally and non-maximally entangled mixed states. Quant. Inf. Compt. 10, 398–419 (2010)

    MathSciNet  MATH  Google Scholar 

  21. S. Isizaka, T. Hiroshima, Maximally entangled mixed states under nonlocal unitary operations in two qubits. Phys. Rev. A. 62, 022310 (2000)

    Article  ADS  Google Scholar 

  22. K.G. Paulson, S.V.M. Satyanarayana, Bounds on mixedness and entanglement of quantum teleportation resources. Phys. Lett. A 381, 1134–1137 (2017)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Namitha C V acknowledges DST for the financial support (No. DST/INSPIRE Fellowship/2013/974) under the scheme of AORC-INSPIRE Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. M. Satyanarayana.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Namitha, C.V., Paulson, K.G. & Satyanarayana, S.V.M. Rank dependence of entanglement sudden death of a two-qubit system in a thermal reservoir. J Opt 48, 474–478 (2019). https://doi.org/10.1007/s12596-019-00563-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12596-019-00563-9

Keywords

Navigation