Skip to main content
Log in

Passively mode-locked Tm, Ho:LLF laser at 1895 nm

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

A passively continuous-wave mode-locked Tm, Ho:LiLuF4 laser employing a GaAs-based semiconductor saturable absorber mirror is demonstrated for the first time. Pumped by a CW Ti:sapphire laser at 780 nm, the laser-absorbed-pump-power threshold is as low as 108 mW. When the absorbed pump power is increased to 910 mW, the laser operation is evolved to the Q-switched mode-locking from the Q-switching. Further improving the absorbed pump power to 1.86 W, the continuous stable mode-locking operation is obtained. Typical pulses of 4.7 ps at 1895 nm with an average output power of 257 mW and repetition rate of 98.04 MHz were obtained under the absorbed pump power of 2.7 W.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. E. Sorokin, I.T. Sorokina, J. Mandon et al., Sensitive multiplex spectroscopy in the molecular fingerprint 2.4 μm region with a Cr2+:ZnSe femtosecond laser. Opt. Express 15(25), 16540–16545 (2007)

    Article  ADS  Google Scholar 

  2. A. Dergachev, High-energy, kHz-rate, picosecond, 2-μm laser pump source for mid-IR nonlinear optical devices. Proc. SPIE Int. Soc. Opt. Eng. 8599, 85990B–85990B-14 (2013)

    ADS  Google Scholar 

  3. V. Petrov, Frequency down-conversion of solid-state laser sources to the mid-infrared spectral range using non-oxide nonlinear crystals. Prog. Quantum Electron. 42, 1–106 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  4. A. Khodabakhsh, V. Ramaiah-Badarla, L. Rutkowski, A.C. Johansson, K.F. Lee, J. Jiang, C. Mohr, M.E.F. Ermann, A. Foltynowicz, Fourier transform and Vernier spectroscopy using an optical frequency comb at 3–5.4 μm. Opt. Lett. 41, 2541 (2016)

    Article  ADS  Google Scholar 

  5. J. Yao, B. Zhang, K. Yin, L. Yang, J. Hou, Q. Lu, Mid-infrared supercontinuum generation in step-index As2S3 fibers pumped by a nanosecond shortwave-infrared supercontinuum pump source. Opt. Express 24, 15093 (2016)

    Article  ADS  Google Scholar 

  6. W.B. Cho, A. Schmidt, J.H. Yim et al., Passive mode-locking of a Tm-doped bulk laser near 2 microm using a carbon nanotube saturable absorber. Opt. Express 17(13), 11007–11012 (2009)

    Article  ADS  Google Scholar 

  7. A.A. Lagatsky, X. Han, M.D. Serrano et al., Femtosecond (191 fs) NaY(WO4)2 Tm, Ho-codoped laser at 2060 nm. Opt. Lett. 35(18), 3027–3029 (2010)

    Article  ADS  Google Scholar 

  8. A.A. Lagatsky, F. Fusari, S. Calvez et al., Passive mode locking of a Tm, Ho:KY(WO4)2 laser around 2 μm. Opt. Lett. 34(17), 2587–2589 (2012)

    Article  ADS  Google Scholar 

  9. A.A. Lagatsky, S. Calvez, J.A. Gupta et al., Broadly tunable femtosecond mode-locking in a Tm:KYW laser near 2 μm. Opt. Express 19(10), 9995–10000 (2011)

    Article  ADS  Google Scholar 

  10. A. Schmidt, S.Y. Choi, D.I. Yeom et al., Femtosecond pulses near 2 μm from a Tm:KLuW laser mode-locked by a single-walled carbon nanotube saturable absorber. Appl. Phys. Express 5(9), 2704 (2012)

    Article  Google Scholar 

  11. Y. Wang, W. Chen, M. Mero, L. Zhang, H. Lin, Z. Lin, G. Zhang, F. Rotermund, Y.J. Cho, P. Loiko, X. Mateos, U. Griebner, V. Petrov, Sub-100 fs Tm:MgWO4 laser at 2017 nm mode locked by a graphene saturable absorber. Opt. Lett. 42, 3076–3079 (2017)

    Article  ADS  Google Scholar 

  12. A. Schmidt, P. Koopmann, G. Huber et al., 175 fs Tm:Lu2O3 laser at 2.07 μm mode-locked using single-walled carbon nanotubes. Opt. Express 20(5), 5313 (2012)

    Article  ADS  Google Scholar 

  13. A.A. Lagatsky, O.L. Antipov, W. Sibbett, Broadly tunable femtosecond Tm:Lu2O3 ceramic laser operating around 2070 nm. Opt. Express 20(17), 19349–19354 (2012)

    Article  ADS  Google Scholar 

  14. A.A. Lagatsky, Z. Sun, T.S. Kulmala et al., 2 μm solid-state laser mode-locked by single-layer graphene. Appl. Phys. Lett. 102(1), 959 (2012)

    Google Scholar 

  15. A.A. Lagatsky, P. Koopmann, P. Fuhrberg et al., Passively mode locked femtosecond Tm:Sc2O3 laser at 2.1 μm. Opt. Lett. 37(3), 437–439 (2012)

    Article  ADS  Google Scholar 

  16. K. Yang, H. Bromberger, H. Ruf et al., Passively mode-locked Tm, Ho:YAG laser at 2 μm based on saturable absorption of intersubband transitions in quantum wells. Opt. Express 18(7), 6537–6544 (2010)

    Article  ADS  Google Scholar 

  17. H. Wan, W. Cai, F. Wang et al., High-quality monolayer graphene for bulk laser mode-locking near 2 μm. Opt. Quantum Electron. 48(1), 11 (2016)

    Article  Google Scholar 

  18. L.C. Kong, Z.P. Qin, G.Q. Xie et al., Dual-wavelength synchronous operation of a mode-locked 2-μm Tm:CaYAlO4 laser. Opt. Lett. 40(3), 356–358 (2015)

    Article  ADS  Google Scholar 

  19. Y. Wang, G. Xie, X. Xu et al., SESAM mode-locked Tm:CALGO laser at 2 µm. Opt. Mater. Express 6(1), 131–136 (2016)

    Article  ADS  Google Scholar 

  20. C. Luan, K. Yang, J. Zhao et al., Diode-pumped mode-locked Tm:LuAG laser at 2 μm based on GaSb-SESAM. Opt. Lett. 42(4), 839–842 (2017)

    Article  ADS  Google Scholar 

  21. N. Coluccelli, G. Galzerano, D. Gatti et al., Passive mode-locking of a diode-pumped Tm:GdLiF4 laser. Appl. Phys. B 101(1), 75–78 (2010)

    Article  ADS  Google Scholar 

  22. H. Peng, K. Zhang, L. Zhang et al., Spectroscopic properties of Tm, Ho:LiLuF4. Chin. Opt. Lett. 8(1), 63–65 (2010)

    Article  Google Scholar 

  23. X. Zhang, L. Yu, S. Zhang et al., Diode-pumped continuous wave and passively Q-switched Tm, Ho:LLF laser at 2 μm. Opt. Express 21(10), 12629 (2013)

    Article  ADS  Google Scholar 

  24. X. Zhang, Y. Luo, T. Wang et al., Cr:ZnS saturable absorber passively Q-switched mode-locking Tm, Ho:LLF laser. Appl. Opt. 56(11), 2973 (2017)

    Article  ADS  Google Scholar 

  25. W.J. Ling, J.A. Zheng, Y.L. Jia, Z.Y. Wei, Theoretical study on the Ti:sapphire laser with low pump threshold. Acta Phys. Sin. 54, 1619–1622 (2005)

    Google Scholar 

  26. H.A. Haus, Mode-locking of lasers. IEEE J. Sel. Top. Quantum Electron. 6(6), 1173–1185 (2002)

    Article  ADS  Google Scholar 

  27. V. Aleksandrov, A. Gluth, U. Griebner, V. Petrov, I. Buchvarov, G. Steinmeyer, J. Paajaste, S. Suomalainen, A. Härkönen, M. Guina, X. Mateos, F. Díaz, GaSb-based SESAM mode-locked Tm, Ho:KLuW laser at 2060 nm, in Advanced Solid State Lasers, OSA Technical Digest (Optical Society of America, 2014), paper ATu2A.52 (online)

  28. V. Aleksandrov, A. Gluth, V. Petrov et al., Mode-locked Tm, Ho:KLu(WO4)2 laser at 2060 nm using InGaSb-based SESAMs. Opt. Express 23(4), 4614 (2015)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation of China (Grant Nos. 11774257, 61564008, 61465012, 61461046, 61665010, 61661046), the National Key Research and Development Program (2017YFB045200) and Tianshui science and technology support program project (Grant No. 2018-FZJHK-2704).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Weijun Ling or Zhong Dong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ling, W., Xia, T., Dong, Z. et al. Passively mode-locked Tm, Ho:LLF laser at 1895 nm. J Opt 48, 209–213 (2019). https://doi.org/10.1007/s12596-019-00528-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12596-019-00528-y

Keywords

Navigation