Journal of Optics

, Volume 46, Issue 2, pp 143–148 | Cite as

An all optical scheme for implementing an integrated Pauli’s X, Y and Z quantum gates with optical switches

Research Article


Quantum logic gates have currently drawn the attention of optical community, as the qubits can easily be formed by polarization states of light. Again Pockels materials can take the role of changing the state of polarization of light by biasing the electric field. In this paper the authors propose first time an integrated scheme of Pauli X, Y, and Z quantum logic gates using electro optic Pockels material as an optical switch. This system not only preserves the basic advantages of quantum gates, but also exploits the parallelism of optics towards the increase of the speed of operation.


Qubit Quantum logic gate Pauli’s X, Y, Z-gate Polarization state of light Vπ voltage 


  1. 1.
    H. Du, Y. Liang, S. Zhang, X. Chen, L. Zhao, Practical high-speed light source for decoy-state quantum key distribution. Chin. Opt. Lett. 12(7), 072702 (2014)ADSCrossRefGoogle Scholar
  2. 2.
    J. Sun, S. Lu, F. Liu, Adiabatically implementing quantum gates. J. Appl. Phys. 115, 224901 (2014)ADSCrossRefGoogle Scholar
  3. 3.
    C. Yu, X.X. Yi, H. Song, H. Fan, Entangling power in deterministic quantum computation with one qubit. Phys. Rev. A 87, 022322 (2013)ADSCrossRefGoogle Scholar
  4. 4.
    S. Barz, J.F. Fitzsimons, E. Kashefi, P. Walther, Experimental verification of quantum computation. Nat. Phys. 9, 727 (2013)CrossRefGoogle Scholar
  5. 5.
    J.H. Plantenberg, P.C. de Groot, C.J.P.M. Harmans, J.E. Mooij, Demonstration of controlled-NOT quantum gates on a pair of superconducting quantum bits. Nature 447, 836 (2007)ADSCrossRefGoogle Scholar
  6. 6.
    Y. Liang, L.A. Beige, L.C. Kwek, Repeat-until-success linear optics distributed quantum computing. Phys. Rev. Lett. 95, 030505 (2005)ADSCrossRefGoogle Scholar
  7. 7.
    I. Walmsley, Linear Optical Quantum Computing in a Single Spatial Mode. Bull. Am. Phys. Soc. 59(8), BAPS.2014.DAMOP.H4.1 (2014)Google Scholar
  8. 8.
    V. Venkataraman, K. Saha, A.L. Gaeta, Phase modulation at the few-photon level for weak-nonlinearity-based quantum computing. Nat. Photonics 7, 138 (2013)ADSCrossRefGoogle Scholar
  9. 9.
    J.J. Garcia, R.P. Zoller, J.I. Ciras, Speed optimized two-qubit gates with laser coherent control techniques for ion trap quantum computing. Phys. Rev. Lett. 91, 157901 (2003)ADSCrossRefGoogle Scholar
  10. 10.
    C. Monroe, D.M. Meekhof, B.E. King, W.M. Itano, D.J. Wineland, Demonstration of a fundamental quantum logic gate. Phys. Rev. Lett. 75, 4714 (1995)ADSMathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    N.C. Menicucci, S.T. Flammia, O. Pfister, One-way quantum computing in the optical frequency comb. Phys. Rev. Lett. 101, 13050 (2008)CrossRefGoogle Scholar
  12. 12.
    J.L. O’Brien, G.J. Pryde, A.G. White, T.C. Ralph, D. Branning, Demonstration of an all-optical quantum controlled-NOT gate. Nature 426, 264 (2003)ADSCrossRefGoogle Scholar
  13. 13.
    J.L. O’Brien, A. Furusawa, J. Vučković, Photonic quantum technologies. Nat. Photonics 3, 687 (2009)ADSCrossRefGoogle Scholar
  14. 14.
    T.B. Pittman, B.C. Jacobs, J.D. Franson, Demonstration of nondeterministic quantum logic operations using linear optical elements. Phys. Rev. Lett. 88, 257902 (2002)ADSCrossRefGoogle Scholar
  15. 15.
    S. Lloyd, Almost any quantum logic gate is universal. Phy. Rev Lett. 75, 346 (1995)ADSCrossRefGoogle Scholar
  16. 16.
    N.J. Cerf, C. Adami, P.G. Kwiat, Optical simulation of quantum logic. Phys. Rev. A 57, R1477 (1998)ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    S. Mukhopadhyay, Role of optics in super-fast information processing. Indian J. Phys. 84(8), 1069 (2010)ADSCrossRefGoogle Scholar
  18. 18.
    B. Ghosh, S. Biswas, S. Mukhopadhyay, A novel method of all-optical wavelength encoded logic and inhibitor operations with dibit representation technique. Optik 126(4), 483 (2015)ADSCrossRefGoogle Scholar
  19. 19.
    S. Dutta, S. Mukhopadhyay, An all optical approach of frequency encoded NOT based Latch using semiconductor optical amplifier. J. Opt. 39, 35 (2010)CrossRefGoogle Scholar
  20. 20.
    S. Mitra, S. Mukhopadhyay, New proposal of modulation of amplitude- squeezed state of light by message signal. Chin. Opt. Lett. 13(1), 012702 (1015)ADSGoogle Scholar
  21. 21.
    A. Ghatak, K. Thyagarajan, Optical Electronics, 1st Indian edn. (Cambridge University Press, Cambridge, 1991), pp. 461–500Google Scholar

Copyright information

© The Optical Society of India 2017

Authors and Affiliations

  1. 1.Department of PhysicsBejoy Narayan MahavidyalayaItachuna, HooghlyIndia
  2. 2.Department of PhysicsThe University of BurdwanBurdwanIndia

Personalised recommendations