Journal of Optics

, Volume 46, Issue 2, pp 176–182 | Cite as

Parallel optical digital operations using multiple beam interference

  • Saurabh B. Saxena
  • Ruchi Bhardwaj
  • Parag Sharma
  • V. K. Jaiswal
  • Ranjana Mehrotra
Research Article
  • 133 Downloads

Abstract

An experimental study was conducted to realize parallel optical digital operations using multiple beam interference in cascaded Mach–Zehnder and Michelson interferometers. Considering light intensity at different points of 2-D interference pattern as output, which is controlled by intensity of two input beams in the arms of Mach–Zehnder and Michelson interferometers, respectively, two input multiple AND, OR, NAND, NOR, XOR and XNOR optical logic gates are demonstrated simultaneously. Further, a scheme was proposed to use these simultaneous logic operations, in designing integrated photonic circuits. Proposed scheme may have potential application in ultrafast information processing due to parallel multiple logic operations using the least number of electro-optic/all-optical switches, e.g. using only two photonic switches in the input arms in the present case.

Keywords

Multiple beam interference Optical parallel logic gates Optical/photonic chips 

Notes

Acknowledgements

The authors would like to acknowledge Director, CSIR-National Physical Laboratory New Delhi, India for encouragement and support. Authors are thankful to Dr. Stuti Joshi for helpful discussions.

References

  1. 1.
    H. Abdeldayem, D.O. Frazier, Optical computing: need and challenge. Commun. ACM 50(9), 60–62 (2007)CrossRefGoogle Scholar
  2. 2.
    A.A. Sawchuk, T.C. Strand, Digital optical computing. Proc. IEEE 72(7), 758–779 (1984)CrossRefGoogle Scholar
  3. 3.
    R. Jaimes-Reátegui, S.M. Afanador-Delgado, R. Sevilla-Escoboza, G. Huerta-Cuéllar, J. García-López, D. López-Mancilla, Castañeda-Hernández, A.N. Pisarchik, Optoelectronic flexible logic gate based on a fiber laser. Eur. Phys. J. Spec. Top. 223(13), 2837–2846 (2014).CrossRefGoogle Scholar
  4. 4.
    V.R. Almeida, C.A. Barrios, R.R. Panepucci, M. Lipson, All-optical control of light on a silicon chip. Nature 431, 1081–1084 (2004)ADSCrossRefGoogle Scholar
  5. 5.
    A. Lim, J. Song, Q. Fang, C. Li, X. Tu, N. Duan, K. Chen, R.P. Tern, T. Liow, Review of silicon photonics foundry efforts. IEEE J. Sel. Top. Quantum. Electron. 20(4), 405–416 (2014).CrossRefGoogle Scholar
  6. 6.
    A.S. Patra, A. Khare, Interoferometric array generation. Opt. Laser Technol. 38(1), 37–45 (2006)ADSCrossRefGoogle Scholar
  7. 7.
    G.M. Burrow, T.K. Gaylord, Multi-beam interference advances and applications: nano-electronics, photonic crystals, metamaterials, subwavelength structures, optical trapping, and biomedical structures. Micromachines 2(2), 221–257 (2011)CrossRefGoogle Scholar
  8. 8.
    S. Singh, R. Kaur, R.S. Kaler, Photonic processing for all-optical logic gates based on semiconductor optical amplifier. Opt. Eng. 53(11), 116102-1–116102-8 (2014)ADSCrossRefGoogle Scholar
  9. 9.
    C. Schubert, S. Diez, J. Berger, R. Ludwig, U. Feiste, H.G. Weber, G. Toptchiyski, K. Petermann, V. Krajinovic, 160-Gb/s all-optical demultiplexing using a gain-transparent ultrafast-nonlinear interferometer (GT-UNI). IEEE Photonics Technol. Lett. 13(5), 475–477 (2001)ADSCrossRefGoogle Scholar
  10. 10.
    P. Singh, D. K. Tripathi, S. Jaiswal, H. Dixit, All-optical logic gates: designs, classification and comparison. Adv. Opt. Technol. 2014, 1–13 (2014) (Article ID 275083)Google Scholar
  11. 11.
    P.P. Sarkar, S. Mukhopadhyay, All optical frequency encoded NAND logic operation along with the simulated result. J. Opt. 43(3), 177–182 (2014)CrossRefGoogle Scholar
  12. 12.
    H.J. Dorren, G. Khoe, D. Lenstra, All-optical switching of an ultrashort pulse using a semiconductor optical amplifier in a Sagnac-interferometric arrangement. Opt. Commun. 205(4-6), 247–252 (2002)ADSCrossRefGoogle Scholar
  13. 13.
    P. Sharma, S. Roy, All-optical biomolecular parallel logic gates with bacteriorhodopsin. IEEE Trans. Naobiosci. 3(2), 129–136 (2004)CrossRefGoogle Scholar
  14. 14.
    P. Sharma, S. Roy, All-optical light modulation in pharaonis phoborhodopsin and its application to parallel logic gates. J. Appl. Phys. 96, 1687–1695 (2004)ADSCrossRefGoogle Scholar
  15. 15.
    K. Alti, P. Chapate, K. Singh, Simultaneous realization of multiple NAND optical logic gates using four beam interferometer. Int. J. Basic Appl. Res. 103–105 (2012) (Special Issue NCRTP-2012)Google Scholar
  16. 16.
    P.P. Padghan, K. Alti, Experimental realization of multiple all optical universal logic gates using array illuminator. Int. J. Pure Appl. Res. Eng. Technol. 2(9), 238–245 (2014)Google Scholar
  17. 17.
    W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, H. Wang, W. Liu, J. Bao, Y.R. Shen, Ultrafast all-optical graphene modulator. Nano Lett. 14(2), 955–959 (2014)ADSCrossRefGoogle Scholar
  18. 18.
    H. Zhang, S.B. Lu, J. Zheng, J. Du, S.C. Wen, D.Y. Tang, K.P. Loh, Molybdenum disulfide (MoS2) as a broadband saturable absorber for ultra-fast photonics. Opt. Express 22(6), 7249–7260 (2014)ADSCrossRefGoogle Scholar
  19. 19.
    Y. Lin, X. Zhang, X. Fang, S. Liang, A cross-stacked plasmonic nanowire network for high-contrast femtosecond optical switching. Nanoscale 8, 1421–1429 (2016)ADSCrossRefGoogle Scholar
  20. 20.
    L. Yuan, J. Yang, Z. Liu, J. Sun, In-fiber integrated Michelson interferometer. Opt. Lett. 31(18), 2692–2694 (2006)ADSCrossRefGoogle Scholar
  21. 21.
    Z. Liu, F. Bo, L. Wang, F. Tian, L. Yuan, Integrated fiber Michelson interferometer based on poled hollow twin-core fiber. Opt. Lett. 36(13), 2435–2437 (2011)ADSCrossRefGoogle Scholar
  22. 22.
    P. Dainesi, A. Küng, M. Chabloz, A. Lagos, Ph Flückiger, A. Ionescu, P. Fazan, M. Declerq, Ph. Renaud, Ph. Robert, CMOS compatible fully integrated Mach–Zehnder interferometer in SOI technology. IEEE Photonics Technol. Lett. 12(6), 660–662 (2000)ADSCrossRefGoogle Scholar
  23. 23.
    R.P. Webb, R.J. Manning, G.D. Maxwell, A.J. Poustie, 40 Gbit/s all-optical XOR gate based on hybrid-integrated Mach–Zehnder interferometer. Electron. Lett. 39(1), 79–81 (2003)CrossRefGoogle Scholar
  24. 24.
    K. Jinguji, N. Takato, Y. Hida, T. Kitoh, M. Kawachi, Two-port optical wavelength circuits composed of cascaded Mach–Zehnder interferometers with point-symmetrical configurations. J. Lightwave Technol. 14(10), 2301–2310 (1996)ADSCrossRefGoogle Scholar
  25. 25.
    D.W. Kim, A. Barkai, R. Jones, N. Elek, H. Nguyen, A. Liu, Silicon-on-insulator eight-channel optical multiplexer based on a cascade of asymmetric Mach–Zehnder interferometers. Opt. Lett. 33(5), 530–532 (2008)ADSCrossRefGoogle Scholar

Copyright information

© The Optical Society of India 2016

Authors and Affiliations

  1. 1.CSIR-National Physical LaboratoryNew DelhiIndia
  2. 2.Academy of Scientific and Innovative Research (AcSIR)New DelhiIndia

Personalised recommendations