Journal of Optics

, Volume 46, Issue 2, pp 132–142 | Cite as

Numerical simulation of metal subwavelength nanogeometries in organic media using DDA technique: a coupled broadband resonant near electric field perspective

  • Hardik Pathak
  • Alok Ji
  • Nilesh Kumar Pathak
  • R. P. Sharma
Research Article
  • 120 Downloads

Abstract

A simulation model for estimation of the optical properties of spherical and spheroid nano plasmonic geometry coupled with organic media has been studied using discrete dipole approximation (DDA) technique. Silver (Ag) and aluminium (Al) metal nano particles (NPs) are used as a plasmonic element surrounded by organic photovoltaic environment [poly (3-hexyl thiophene)] P3HT-(phenyl-C61-buryricacid methyl ester) PCBM blend. The analysis done in the current article depicts considerable influence of shape, aspect ratio and size on the plasmon resonance that facilitates improvement in the performance of nano plasmonic organic system in the useful spectral domain (250–750 nm). Discretisation of dipoles have been done in the DDA and compared with Mie theory to maintain the accuracy of DDA technique. It has been established that the oblate shape Ag and Al NPs with size of 80 nm (both) with aspect ratio 0.35 and 0.20 are the optimized parameter to enhance the optical properties in an organic surrounding. The optical properties are studied in terms of wavelength dependent extinction spectrum and resonant electric field distribution. Broadband electromagnetic field coupling under the plasmonic effect has led to considerable improvement in the photon absorption inside the organic environment that has been supported by the enhanced JV curve for different nano geometries. Results of the present article can be used as a guiding principle for the plasmonic light trapping devices to improve their optical properties and electrical properties.

Keywords

Discrete dipole approximation Surface plasmon resonance (SPR) Extinction efficiency Plasmonics Organic environment 

References

  1. 1.
    H.A. Atwater, A. Polman, Plasmonics for improved photovoltaic devices. Nat. Mater. 9, 205 (2010)ADSCrossRefGoogle Scholar
  2. 2.
    T.D. Nielsen, C. Cruickshank, S. Foged, J. Thorsen, F.C. Krebs, Business market and intellectual property analysis of polymer solar cells. Sol. Energy Mater. Sol. CellS 94, 1553–1571 (2010)CrossRefGoogle Scholar
  3. 3.
    Z.C. He, Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure. Nat. Photonics 6, 591–595 (2012)ADSMathSciNetGoogle Scholar
  4. 4.
    Y. Liang, Z. Xu, J. Xia, S.T. Tsai, Y. Wu, R. Claire, L. Yu, For the bright future-bulk heterojunction polymer solar cells with power conversion efficiency of 7.4%. Adv. Mater. 22, 135 (2010)CrossRefGoogle Scholar
  5. 5.
    S.I. Na, S.H. Oh, S.S. Kim, D.Y. Kim, Efficient organic solar cells with polyfluorene derivatives as a cathode interfacial layer. Organ. Electron. 10, 496 (2009)CrossRefGoogle Scholar
  6. 6.
    J.D. Servaites, M.A. Ratner, T.J. Marks, Practical efficiency limits in organic photovoltaic cells: functional dependence of fill factor and external quantum efficiency. Appl. Phys. Lett. 95, 163302 (2009)ADSCrossRefGoogle Scholar
  7. 7.
    L. Dou, J. You, J. Yang, C.C. Chen, Y. He, S. Murase, T. Moriarty, K. Emery, G. Li, Y. Yang, Tandem polymer solar cells featuring a spectrally matched low bandgap polymer. Nat. Photonics 6, 180–185 (2012)ADSCrossRefGoogle Scholar
  8. 8.
    V. Shrotriya, Y. Yao, G. Li, Y. Yang, Transition metal oxides as the buffer layer for polymer photovoltaic cells. Appl. Phys. Lett. 89, 063505 (2006)ADSCrossRefGoogle Scholar
  9. 9.
    Y. Jin, J. Feng, X.L. Zhang, M. Xu, Y.G. Bi, Surface-plasmon enhanced absorption in organic solar cells by employing a periodically corrugated metallic electrode. Appl. Phys. Lett. 101, 163303 (2012)ADSCrossRefGoogle Scholar
  10. 10.
    C. Soci, I.W. Hwang, D. Moses, Z. Zhu, D. Waller, R. Gaudiana, C.J. Brabec, A.J. Heeger, Photoconductivity of a low-bandgap conjugated polymer. Adv. Funct. Mater. 17, 632–636 (2007)CrossRefGoogle Scholar
  11. 11.
    P. Campbell, M.A. Green, Light trapping properties of pyramidally texture surfaces. J. Appl. Phys. 62, 243–249 (1987)ADSCrossRefGoogle Scholar
  12. 12.
    J. Yang, J. You, C.C. Chen, W.C. Hsu, H.R. Tan, X.W. Zhang, Z. Hong, Y. Yang, Plasmonic polymer tandem solar cell. ACS Nano 5, 6210–6217 (2011)CrossRefGoogle Scholar
  13. 13.
    J.Y. Kim, K. Lee, N.E. Coates, D. Moses, T.Q. Nguyen, M. Dante, A.J. Heeger, Efficient tandem polymer solar cells fabricated by all-solution processing. Science 317, 222–225 (2007)ADSCrossRefGoogle Scholar
  14. 14.
    K. Saikiaa, D. Senb, S. Mazumderb, P. Deb, Reassembling nanometric magnetic subunits into secondary nanostructures with controlled interparticle spacing. RSC Adv. 5(1), 694–705 (2014)CrossRefGoogle Scholar
  15. 15.
    P. Deb, Kinetics of Heterogeneous Solid State Processes (Springer, New York, 2014)CrossRefGoogle Scholar
  16. 16.
    S.A. Maier, Plasmonics: Fundamentals and Applications (Springer, Berlin, 2007)Google Scholar
  17. 17.
    S. Pillai, M.A. Green, Plasmonics for photovoltaic applications. Solar Energy Mater. Solar Cells 94, 1481 (2010)CrossRefGoogle Scholar
  18. 18.
    N.K. Pathak, A. Ji, R.P. Sharma, Study of efficiency enhancement in layered geometry excitonic-plasmonic solar cell. Appl. Phys. A 115, 1445–1450 (2014)ADSCrossRefGoogle Scholar
  19. 19.
    V.E. Ferry, J.N. Munday, H.A. Atwater, Design considerations for plasmonic photovoltaics. Adv. Mater. 22, 4794–4808 (2010)CrossRefGoogle Scholar
  20. 20.
    J.Y. Lee, P. Peumans, The origin of enhanced optical absorption in solar cells with metal nanoparticles embedded in the active layer. Opt. Express 18, 10078–10087 (2010)ADSCrossRefGoogle Scholar
  21. 21.
    A. Ji, R. Sharma, H. Pathak, N.K. Pathak, R.P. Sharma, A study of nanoellipsoids for thin-film plasmonic solar cell applications. J. Phys. D Appl. Phys. 48, 275101 (2015)ADSCrossRefGoogle Scholar
  22. 22.
    M. Gogoi, P. Deb, G. Vasan, P. Keil, A. Kostka, A. Erbe, Direct monophasic replacement of fatty acid by DMSA on SPION surface. Appl. Surf. Sci. 258(24), 9685–9691 (2012)ADSCrossRefGoogle Scholar
  23. 23.
    P. Vanlaekea, A. Swinnenb, I. Haeldermansb, G. Vanhoylandb, T. Aernoutsa, D. Cheynsa, C. Deibela, J. D’Haena, P. Heremansa, J. Poortmansa, J.V. Mancaa, P3HT/PCBM bulk heterojunction solar cells: relation between morphology and electro optical characteristics. Sol. Energy Mater. Sol. Cells 90, 2150–2158 (2006)CrossRefGoogle Scholar
  24. 24.
    X. Li, W.C.H. Choy, L. Huo, F. Xie, W.E.I. Sha, B. Ding, X. Guo, Y. Li, J. Hou, J. You, Y. Yang, Dual plasmonic nanostructures for high performance inverted organic solar cells. Adv. Mater. 24, 3046–3052 (2012)ADSCrossRefGoogle Scholar
  25. 25.
    X. Li, W.C.H. Choy, H. Lu, W.E.I. Sha, A.H.P. Ho, Efficiency enhancement of organic solar cells by using shape-dependent broadband plasmonic absorption in metallic nanoparticles. Adv. Funct. Mater. 23, 2728–2735 (2013)CrossRefGoogle Scholar
  26. 26.
    C.D. Charlie Wang, W.C.H. Choy, C. Duan, D.D.S. Fung, W.E.I. Sha, F.X. Xie, F. Huang, Y. Cao, Optical and electrical effects of gold nanoparticles in the active layer of polymer solar cells. J. Mater. Chem. 22, 1206 (2012)CrossRefGoogle Scholar
  27. 27.
    F.X. Xie, W.C.H. Choy, C.C.D. Wang, W.E.I. Sha, D.D.S. Fung, Improving the efficiency of polymer solar cells by incorporating gold nanoparticles into all polymer layers. Appl. Phys. Lett. 99, 153304 (2011)ADSCrossRefGoogle Scholar
  28. 28.
    P. Li, Speed-up electronic integrated circuits with plasmonic technology. IEEE Photonic Soc. 978(1), 4244–5369 (2010)Google Scholar
  29. 29.
    H. Pathak, A. Ji, R. Sharma, R.P. Sharma, Optical properties of metal subwavelength structures for realistic geometries in a dielectric matrix using DDA: an error analysis. Plasmonics 10, 783–789 (2015)CrossRefGoogle Scholar
  30. 30.
    A.M. Kern, O.J.F. Martin, Surface integral formulation for 3D simulations of plasmonic and high permittivity nanostructures. J. Opt. Soc. Am. A 26, 732 (2008)ADSMathSciNetCrossRefGoogle Scholar
  31. 31.
    S.H. Chang, S.K. Gray, G.C. Schatz, Surface plasmon generation and light transmission by isolated nanoholes and arrays of nanoholes in thin metal films. Opt. Express 13, 3150–3165 (2005)ADSCrossRefGoogle Scholar
  32. 32.
    B.T. Draine, P.J. Flatau, Discrete-dipole approximation for scattering calculations. J. Opt. Soc. Am. 11, 1491–1499 (1994)ADSCrossRefGoogle Scholar
  33. 33.
    B.T. Draine, P.J. Flatau, User guide to the discrete dipole approximation code DDSCAT 7.3. http://arxiv.org/abs/1202.3424
  34. 34.
    A.J. Sangita, R.P. Sharma, A study of nanoellipsoids for thin-film plasmonic solar cell applications. J. Phys. D Appl. Phys. 45, 275101 (2012)CrossRefGoogle Scholar
  35. 35.
    C.F. Bohren, D.R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1998)CrossRefGoogle Scholar
  36. 36.
    E.D. Palik, Handbook of Optical Constants of Solids (Academic Press, New York, 1985)Google Scholar
  37. 37.
    U. Kreibig, M. Vollmer, Optical Properties of Metal Clusters (Wiley, New York, 1995)CrossRefGoogle Scholar
  38. 38.
    M.W. Knight, N.S. King, L. Liu, H.O. Everitt, P. Nordlander, N.J. Halas, Aluminum for plasmonics. ACS Nano 8, 834–840 (2014)CrossRefGoogle Scholar
  39. 39.
    AM1.5 Spectra, American Society for Testing. http://rredc.nreal.gov/solar/spectra/am1.5
  40. 40.
    W. Shockley, H. Queisser, Detailed balance limit of efficiency of p–n junction solar cells. J. Appl. Phys. 32, 510 (1961)ADSCrossRefGoogle Scholar

Copyright information

© The Optical Society of India 2016

Authors and Affiliations

  • Hardik Pathak
    • 1
    • 2
  • Alok Ji
    • 1
  • Nilesh Kumar Pathak
    • 1
  • R. P. Sharma
    • 1
  1. 1.Center for Energy StudiesIndian Institute of TechnologyDelhiIndia
  2. 2.Electrical Engineering DepartmentG H Patel College of Engineering and TechnologyVallabh VidhyanagarIndia

Personalised recommendations