Advertisement

Journal of Optics

, Volume 46, Issue 1, pp 8–15 | Cite as

Mathematical model of semiconductor fiber ring laser gyroscope

  • Arpit Khandelwal
  • Azeemuddin Syed
  • Jagannath Nayak
Research Article
  • 154 Downloads

Abstract

In this paper, we have mathematically modeled and analyzed the composite cavity Semiconductor Fiber Ring Laser for its use as an inertial rotation sensor or gyroscope. The rate equations of Semiconductor Optical Amplifier and the transfer function of other components in the configuration, viz. optical filter, output coupler and Y-junction coupler have been considered separately for modelling. The final output expression shows the effect of these components on the intensity of the beat signal. The frequency of the beat signal intensity is shown to be independent of the parameters of the components, which underlines the advantage of frequency-domain sensing.

Keywords

Semiconductor fiber ring laser gyroscope Composite cavity laser Frequency-domain sensing Rate equations 

Notes

Funding

This work is funded by Research Center Imarat (RCI), Defence Research and Development Organisation (DRDO), India under the contract RCI/DCMM/LPD/CARS-0325.

Compliance with ethical standards

Conflicts of interest

There are no confict of interest in this work as one of the authors is the head of the funding agency and has no objection in publishing this work.

References

  1. 1.
    H. Ford, Trans. Am. Inst. Electr. Eng. 33(1), 857 (1914)CrossRefGoogle Scholar
  2. 2.
    M. Matthews, J. Br. Inst. Radio Eng. 22(3), 231 (1961)Google Scholar
  3. 3.
    G. Newton, Proc. IRE 48(4), 520 (1960)CrossRefGoogle Scholar
  4. 4.
    A.L. Schawlow, C.H. Townes, Phys. Rev. 112(6), 1940 (1958)ADSCrossRefGoogle Scholar
  5. 5.
    E.J. Post, Rev. Mod. Phys. 39(2), 475 (1967)ADSCrossRefGoogle Scholar
  6. 6.
    G.J. Martin, IEEE Spectr. 23, 48 (1986)ADSCrossRefGoogle Scholar
  7. 7.
    M.N. Armenise, C. Ciminelli, F. Dell’Olio, V.M. Passaro, Advances in Gyroscope Technologies (Springer, Berlin, 2010)zbMATHGoogle Scholar
  8. 8.
    J. Nuttall, Electron. Power 33(11), 703 (1987)CrossRefGoogle Scholar
  9. 9.
    H. Arditty, H.C. Lefevre, Opt. Lett. 6(8), 401 (1981)ADSCrossRefGoogle Scholar
  10. 10.
    V. Vali, R. Shorthill, Appl. Opt 15(5), 1099 (1976)ADSCrossRefGoogle Scholar
  11. 11.
    H.C. Lefèvre, SPIE’s 1996 international symposium on optical science, engineering, and instrumentation, in (International Society for Optics and Photonics, 1996), pp. 2–17Google Scholar
  12. 12.
    G.A. Sanders, M. Prentiss, S. Ezekiel, Opt. Lett. 6(11), 569 (1981)ADSCrossRefGoogle Scholar
  13. 13.
    R. Meyer, S. Ezekiel, D.W. Stowe, V. Tekippe, Opt. Lett. 8(12), 644 (1983)ADSCrossRefGoogle Scholar
  14. 14.
    F. Aronowitz, dts (1999)Google Scholar
  15. 15.
    W. Chow, J. Gea-Banacloche, L. Pedrotti, V. Sanders, W. Schleich, M. Scully, Rev. Mod. Phys. 57(1), 61 (1985)ADSCrossRefGoogle Scholar
  16. 16.
    M. Faucheux, D. Fayoux, J. Roland, J. Opt. 19(3), 101 (1988)ADSCrossRefGoogle Scholar
  17. 17.
    K.U. Schreiber, J.P.R. Wells, Rev. Sci. Instrum. 84(4), 041101 (2013)ADSCrossRefGoogle Scholar
  18. 18.
    C. Ciminelli, F. Dell’Olio, C.E. Campanella, M.N. Armenise, Adv. Opt. Photonics 2(3), 370 (2010)CrossRefGoogle Scholar
  19. 19.
    S. Schwartz, F. Gutty, G. Feugnet, É. Loil, J.P. Pocholle, Opt. Lett. 34(24), 3884 (2009)ADSCrossRefGoogle Scholar
  20. 20.
    S. Kim, H. Kim, B. Kim, Opt. Lett. 19(22), 1810 (1994)ADSCrossRefGoogle Scholar
  21. 21.
    S. Schwartz, F. Gutty, G. Feugnet, J.P. Pocholle, G. Desilles,Google Scholar
  22. 22.
    K. Taguchi, K. Fukushima, A. Ishitani, M. Ikeda, Opt. Quantum Electron. 31(12), 1219 (1999)CrossRefGoogle Scholar
  23. 23.
    R. Kadiwar, I. Giles, Electron. Lett. 25(25), 1729 (1989)ADSCrossRefGoogle Scholar
  24. 24.
    M. Nakazawa, Opt. Lett. 10(4), 193 (1985)ADSCrossRefGoogle Scholar
  25. 25.
    R. Jopson, G. Eisenstein, M. Whalen, K. Hall, U. Koren, J. Simpson, Appl. Phys. Lett. 48(3), 204 (1986)ADSCrossRefGoogle Scholar
  26. 26.
    V. Grigoruk, I. Pugach, Y. Onysko, Y. Slinchenko, V. Shanoylo, Laser and fiber-optical networks modeling, 2004, in Proceedings of LFNM 2004. 6th International Conference on (IEEE, 2004), pp. 32–34Google Scholar
  27. 27.
    V.P. Duraev, S.V. Medvedev, Quantum Electron. 43(10), 914 (2013)ADSCrossRefGoogle Scholar
  28. 28.
    P.L. Li, D.X. Huang, X.L. Zhang, J. Chen, L.R. Huang, IEEE J. Quantum Electron. 41(4), 581 (2005)ADSCrossRefGoogle Scholar
  29. 29.
    A. Syed, M.R. Sayeh, in Integrated Photonics Research, Silicon and Nanophotonics (Optical Society of America, 2012), pp. JTu5A–8Google Scholar
  30. 30.
    S. Oshiba, K. Nagai, M. Kawahara, A. Watanabe, Y. Kawai, Appl. Phys. Lett. 55(23), 2383 (1989)ADSCrossRefGoogle Scholar
  31. 31.
    S. Tai, K. Kojima, S. Noda, K. Kyuma, K. Hamanaka, T. Nakayama, Appl. Phys. Lett. 49(20), 1328 (1986)ADSCrossRefGoogle Scholar
  32. 32.
    Z. Wang, G. Verschaffelt, G. Mezosi, M. Sorel, J. Danckaert, S. Yu, in Optical Fiber Communication Conference (Optical Society of America, 2008), p. OWQ5Google Scholar
  33. 33.
    Y. Takahashi, S. Sekiya, T. Suemune, Opt. Photonics J. 1(04), 167 (2011)CrossRefGoogle Scholar
  34. 34.
    T. Suemune, Y. Takahashi, Opt. Lasers Eng. 45(7), 789 (2007)CrossRefGoogle Scholar
  35. 35.
    K. Inagaki, S. Tamura, H. Noto, T. Harayama, in Optical Fiber Sensors (Optical Society of America, 2006), p. ME7Google Scholar
  36. 36.
    K. Taguchi, K. Fukushima, A. Ishitani, M. Ikeda, Electron. Lett. 34(18), 1775 (1998)CrossRefGoogle Scholar
  37. 37.
    V.V. Akparov, V.G. Dmitriev, V.P. Duraev, A.A. Kazakov, Quantum Electron. 40(10), 851 (2010)ADSCrossRefGoogle Scholar
  38. 38.
    T. Ishida, S. Tamura, S. Sunada, K. Inagaki, S. Saito, T. Harayama, in 19th International Conference on Optical Fibre Sensors (International Society for Optics and Photonics, 2008), pp. 700,450–700,450Google Scholar
  39. 39.
    L.N. Menegozzi, W.E. Lamb Jr., Phys. Rev. A 8(4), 2103 (1973)ADSCrossRefGoogle Scholar
  40. 40.
    F. Aronowitz, R. Collins, Appl. Phys. Lett. 9(1), 55 (1966)ADSCrossRefGoogle Scholar
  41. 41.
    R. Spreeuw, R.C. Neelen, N. Van Druten, E. Eliel, J. Woerdman, Phys. Rev. A 42(7), 4315 (1990)ADSCrossRefGoogle Scholar
  42. 42.
    N. El-Sheimy, H. Hou, X. Niu, IEEE Trans. Instrum. Meas. 57(1), 140 (2008)CrossRefGoogle Scholar
  43. 43.
    C. Masoller, Opt. Commun. 128(4), 363 (1996)ADSCrossRefGoogle Scholar
  44. 44.
    L.A. Coldren, S.W. Corzine, M.L. Mashanovitch, Diode Lasers and Photonic Integrated Circuits, vol. 218 (Wiley, Hoboken, 2012)CrossRefGoogle Scholar
  45. 45.
    M. Sorel, G. Giuliani, A. Scirè, R. Miglierina, S. Donati, P. Laybourn, IEEE J. Quantum Electron. 39(10), 1187 (2003)ADSCrossRefGoogle Scholar
  46. 46.
    C. Peng, M. Yao, J. Zhang, H. Zhang, Q. Xu, Y. Gao, Opt. Commun. 209(1), 181 (2002)ADSCrossRefGoogle Scholar
  47. 47.
    G.P. Agrawal, N.A. Olsson, IEEE J. Quantum Electron. 25(11), 2297 (1989)ADSCrossRefGoogle Scholar

Copyright information

© The Optical Society of India 2016

Authors and Affiliations

  1. 1.Centre for VLSI and Embedded Systems TechnologyInternational Institute of Information Technology Hyderabad GachibowliHyderabadIndia
  2. 2.Inertial Systems Group, Research Centre ImaratDRDOHyderabadIndia

Personalised recommendations