Advertisement

Journal of Optics

, Volume 46, Issue 2, pp 187–190 | Cite as

Coupling length and coupling loss in AlGaAs photonic crystal waveguides

Research Article
  • 111 Downloads

Abstract

In this work, we present the theoretical simulation results of a two parallel plasmonic waveguides structure with same geometries. There is a low-index semiconductor AlGaAs layer between the GaAs layer and the metal layer. The coupling length and coupling loss are calculated at the telecom wavelength (1550 nm) for different structures by employing the finite-difference time domain.

Keywords

Surface plasmons Coupling length Coupling loss Metal–semiconductor–semiconductor waveguides 

References

  1. 1.
    B.G. Lee, A. Biberman, P. Dong, M. Lipson, K. Bergman, All-optical comb switch for multiwavelength message routing in silicon photonic networks. IEEE Photon. Technol. Lett. 20(10), 767–769 (2008)ADSCrossRefGoogle Scholar
  2. 2.
    H.S. Chu, C.H. Gan, Active plasmonic switching at mid-infrared wavelengths with graphene ribbon arrays. Appl. Phys. Lett. 102(23), 231107 (2013)ADSCrossRefGoogle Scholar
  3. 3.
    C.M. de Sterke, D.G. Salinas, J.E. Sipe, Coupled mode theory for light propagation through deep nonlinear gratings. Phys. Rev. E 54(2), 1969–1989 (1996)ADSCrossRefGoogle Scholar
  4. 4.
    P.E. Barclay, K. Srinivasan, O. Painter, Design of photonic crystal waveguides for evanescent coupling to optical fiber tapers and integration with high-Q cavities. J. Opt. Soc. Am. B/vol. 20(11), 2274–2284 (2003)ADSCrossRefGoogle Scholar
  5. 5.
    M.K. Chin, S.T. Ho, Design and modeling of waveguide-coupled single-mode microring resonators. J. Lightw. Technol. 16(8), 1433–1446 (1997)ADSCrossRefGoogle Scholar
  6. 6.
    C. Manolatou, M.J. Khan, S. Fan, P.R. Villeneuve, H.A. Haus, J.D. Joannopoulos, Coupling of modes analysis of resonant channel add-drop filters. IEEE J. Quantum Electron. 35(9), 1322–1331 (1999)ADSCrossRefGoogle Scholar
  7. 7.
    N.N. Feng, R. Sun, J. Michel, L.C. Kimerling, Low-loss compact-size slotted waveguide polarization rotator and transformer. Opt. Lett. 32(15), 2131–2133 (2007)ADSCrossRefGoogle Scholar
  8. 8.
    H. Fukuda, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Shinojima, S. Itabashi, Ultra small polarization splitter based on silicon wire waveguides. Opt. Express 14(25), 12401–12408 (2006)ADSCrossRefGoogle Scholar
  9. 9.
    Z. Ying, G. Wang, X. Zhang, Y. Huang, H.P. Ho, Y. Zhang, Ultracompact TE-pass polarizer based on a hybrid plasmonic waveguide. IEEE Photon. Technol. Lett. 27(2), 201–204 (2015)ADSCrossRefGoogle Scholar
  10. 10.
    J.C. Weeber, A. Dereux, Ch. Girard, J.R. Krenn, J.P. Goudonnet, Plasmon polaritons of metallic nanowires for controlling submicron propagation of light. Phys. Rev. B 60(15), 9061–9068 (1999)ADSCrossRefGoogle Scholar
  11. 11.
    V.R. Almeida, Q. Xu, C.A. Barrios, M. Lipson, Guiding and confining light in void nanostructure. Opt. Lett. 29(11), 1209–1211 (2004)ADSCrossRefGoogle Scholar
  12. 12.
    X. Guan, H. Wu, Y. Shi, L. Wosinski, D. Dai, Ultracompact and broadband polarization beam splitter utilizing the evanescent coupling between a hybrid plasmonic waveguide and a silicon nanowire. Opt. Lett. 38(16), 3005–3008 (2013)ADSCrossRefGoogle Scholar
  13. 13.
    S. Samanta, P. Banerji, P. Ganguly, Effective index-based matrix method for silicon waveguides in SOI platform. Opt. Int. J. Light Electron Opt. 126(24), 5488–5495 (2015)CrossRefGoogle Scholar
  14. 14.
    P. Ganguly, J.C. Biswas, S.K. Lahiri, Matrix-based analytical model of critical coupling length of titanium in-diffused integrated-optic directional coupler on lithium Niobate substrate. Fiber Integ. Opt. 17, 139–155 (1998)CrossRefGoogle Scholar
  15. 15.
    Q. Chen, Y.D. Yang, Y.Z. Huang, Distributed mode coupling in microring channel drop filters. Appl. Phys. Lett. 89(6), 061118–061119 (2006)ADSCrossRefGoogle Scholar
  16. 16.
    I. Fischer, G.H.M. van Tartwijk, A.M. Levine, W. Elsasser, E. Gobel, D. Lenstra, Fast pulsing and chaotic itinerancy with a drift in the coherence collapse of semiconductor lasers. Phys. Rev. Lett. 76, 220–223 (1996)ADSCrossRefGoogle Scholar
  17. 17.
    D. Modotto, M. Conforti, A. Locatelli, C. De Angelis, Imaging properties of multimode photonic crystal waveguides and waveguide arrays. J. Lightw. Technol. 25(1), 402–409 (2007)ADSCrossRefGoogle Scholar
  18. 18.
    S. Boscolo, M. Midrio, C.G. Someda, Coupling and decoupling of electromagnetic waves in parallel 2-D photonic crystal waveguides. IEEE J. Quantum Electron. 38(1), 47–53 (2002)ADSCrossRefGoogle Scholar
  19. 19.
    Y.A. Vlasov, M. O’Boyle, H.F. Hamann, S.J. McNab, Active control of slow light on a chip with photonic crystal waveguides. Nature 438, 65–69 (2005)ADSCrossRefGoogle Scholar
  20. 20.
    Y.A. Vlasov, S.J. McNab, Coupling into the slow light mode in slab-type photonic crystal waveguides. Opt. Lett. 31(1), 50–52 (2006)ADSCrossRefGoogle Scholar
  21. 21.
    A. Taflove, Advances in Computational Electrodynamics: The Finite- Difference Time-Domain Method, vol. 13 (Artech House, Boston, 1998), pp. 561–612MATHGoogle Scholar
  22. 22.
    B. Monemar, K.K. Shih, G.D. Pettit, Some optical properties of the AlxGa1-xAs alloys system. J. Appl. Phys. 47, 2604–2613 (1976)ADSCrossRefGoogle Scholar
  23. 23.
    S. Gehrsitz, F.K. Reinhart, C. Gourgon, N. Herres, A. Vonlanthen, H. Sigg, The refractive index of AlxGa1-xAs below the band gap: accurate determination and empirical modeling. J. Appl. Phys. 87(11), 7825–7837 (2000)ADSCrossRefGoogle Scholar
  24. 24.
    M.L. Theye, Investigation of the optical properties of Au by means of thin semitransparent films. Phys. Rev. B 2, 3060–3078 (1970)ADSCrossRefGoogle Scholar
  25. 25.
    D.L. Lee, Electromagnetic Principles Of Integrated Optics (Wiley, New York, 1986), p. 227Google Scholar
  26. 26.
    L.B. Soldano, E.C.M. Pennings, Optical multi-mode interference devices based on self-imaging: principles and applications. J. Lightw. Technol. 13(4), 615–627 (1995)ADSCrossRefGoogle Scholar

Copyright information

© The Optical Society of India 2016

Authors and Affiliations

  1. 1.Hawler Institute of TechnologyErbilIraq

Personalised recommendations