Skip to main content
Log in

Coupling length and coupling loss in AlGaAs photonic crystal waveguides

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

In this work, we present the theoretical simulation results of a two parallel plasmonic waveguides structure with same geometries. There is a low-index semiconductor AlGaAs layer between the GaAs layer and the metal layer. The coupling length and coupling loss are calculated at the telecom wavelength (1550 nm) for different structures by employing the finite-difference time domain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. B.G. Lee, A. Biberman, P. Dong, M. Lipson, K. Bergman, All-optical comb switch for multiwavelength message routing in silicon photonic networks. IEEE Photon. Technol. Lett. 20(10), 767–769 (2008)

    Article  ADS  Google Scholar 

  2. H.S. Chu, C.H. Gan, Active plasmonic switching at mid-infrared wavelengths with graphene ribbon arrays. Appl. Phys. Lett. 102(23), 231107 (2013)

    Article  ADS  Google Scholar 

  3. C.M. de Sterke, D.G. Salinas, J.E. Sipe, Coupled mode theory for light propagation through deep nonlinear gratings. Phys. Rev. E 54(2), 1969–1989 (1996)

    Article  ADS  Google Scholar 

  4. P.E. Barclay, K. Srinivasan, O. Painter, Design of photonic crystal waveguides for evanescent coupling to optical fiber tapers and integration with high-Q cavities. J. Opt. Soc. Am. B/vol. 20(11), 2274–2284 (2003)

    Article  ADS  Google Scholar 

  5. M.K. Chin, S.T. Ho, Design and modeling of waveguide-coupled single-mode microring resonators. J. Lightw. Technol. 16(8), 1433–1446 (1997)

    Article  ADS  Google Scholar 

  6. C. Manolatou, M.J. Khan, S. Fan, P.R. Villeneuve, H.A. Haus, J.D. Joannopoulos, Coupling of modes analysis of resonant channel add-drop filters. IEEE J. Quantum Electron. 35(9), 1322–1331 (1999)

    Article  ADS  Google Scholar 

  7. N.N. Feng, R. Sun, J. Michel, L.C. Kimerling, Low-loss compact-size slotted waveguide polarization rotator and transformer. Opt. Lett. 32(15), 2131–2133 (2007)

    Article  ADS  Google Scholar 

  8. H. Fukuda, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Shinojima, S. Itabashi, Ultra small polarization splitter based on silicon wire waveguides. Opt. Express 14(25), 12401–12408 (2006)

    Article  ADS  Google Scholar 

  9. Z. Ying, G. Wang, X. Zhang, Y. Huang, H.P. Ho, Y. Zhang, Ultracompact TE-pass polarizer based on a hybrid plasmonic waveguide. IEEE Photon. Technol. Lett. 27(2), 201–204 (2015)

    Article  ADS  Google Scholar 

  10. J.C. Weeber, A. Dereux, Ch. Girard, J.R. Krenn, J.P. Goudonnet, Plasmon polaritons of metallic nanowires for controlling submicron propagation of light. Phys. Rev. B 60(15), 9061–9068 (1999)

    Article  ADS  Google Scholar 

  11. V.R. Almeida, Q. Xu, C.A. Barrios, M. Lipson, Guiding and confining light in void nanostructure. Opt. Lett. 29(11), 1209–1211 (2004)

    Article  ADS  Google Scholar 

  12. X. Guan, H. Wu, Y. Shi, L. Wosinski, D. Dai, Ultracompact and broadband polarization beam splitter utilizing the evanescent coupling between a hybrid plasmonic waveguide and a silicon nanowire. Opt. Lett. 38(16), 3005–3008 (2013)

    Article  ADS  Google Scholar 

  13. S. Samanta, P. Banerji, P. Ganguly, Effective index-based matrix method for silicon waveguides in SOI platform. Opt. Int. J. Light Electron Opt. 126(24), 5488–5495 (2015)

    Article  Google Scholar 

  14. P. Ganguly, J.C. Biswas, S.K. Lahiri, Matrix-based analytical model of critical coupling length of titanium in-diffused integrated-optic directional coupler on lithium Niobate substrate. Fiber Integ. Opt. 17, 139–155 (1998)

    Article  Google Scholar 

  15. Q. Chen, Y.D. Yang, Y.Z. Huang, Distributed mode coupling in microring channel drop filters. Appl. Phys. Lett. 89(6), 061118–061119 (2006)

    Article  ADS  Google Scholar 

  16. I. Fischer, G.H.M. van Tartwijk, A.M. Levine, W. Elsasser, E. Gobel, D. Lenstra, Fast pulsing and chaotic itinerancy with a drift in the coherence collapse of semiconductor lasers. Phys. Rev. Lett. 76, 220–223 (1996)

    Article  ADS  Google Scholar 

  17. D. Modotto, M. Conforti, A. Locatelli, C. De Angelis, Imaging properties of multimode photonic crystal waveguides and waveguide arrays. J. Lightw. Technol. 25(1), 402–409 (2007)

    Article  ADS  Google Scholar 

  18. S. Boscolo, M. Midrio, C.G. Someda, Coupling and decoupling of electromagnetic waves in parallel 2-D photonic crystal waveguides. IEEE J. Quantum Electron. 38(1), 47–53 (2002)

    Article  ADS  Google Scholar 

  19. Y.A. Vlasov, M. O’Boyle, H.F. Hamann, S.J. McNab, Active control of slow light on a chip with photonic crystal waveguides. Nature 438, 65–69 (2005)

    Article  ADS  Google Scholar 

  20. Y.A. Vlasov, S.J. McNab, Coupling into the slow light mode in slab-type photonic crystal waveguides. Opt. Lett. 31(1), 50–52 (2006)

    Article  ADS  Google Scholar 

  21. A. Taflove, Advances in Computational Electrodynamics: The Finite- Difference Time-Domain Method, vol. 13 (Artech House, Boston, 1998), pp. 561–612

    MATH  Google Scholar 

  22. B. Monemar, K.K. Shih, G.D. Pettit, Some optical properties of the AlxGa1-xAs alloys system. J. Appl. Phys. 47, 2604–2613 (1976)

    Article  ADS  Google Scholar 

  23. S. Gehrsitz, F.K. Reinhart, C. Gourgon, N. Herres, A. Vonlanthen, H. Sigg, The refractive index of AlxGa1-xAs below the band gap: accurate determination and empirical modeling. J. Appl. Phys. 87(11), 7825–7837 (2000)

    Article  ADS  Google Scholar 

  24. M.L. Theye, Investigation of the optical properties of Au by means of thin semitransparent films. Phys. Rev. B 2, 3060–3078 (1970)

    Article  ADS  Google Scholar 

  25. D.L. Lee, Electromagnetic Principles Of Integrated Optics (Wiley, New York, 1986), p. 227

    Google Scholar 

  26. L.B. Soldano, E.C.M. Pennings, Optical multi-mode interference devices based on self-imaging: principles and applications. J. Lightw. Technol. 13(4), 615–627 (1995)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Latef M. Ali.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, L.M. Coupling length and coupling loss in AlGaAs photonic crystal waveguides. J Opt 46, 187–190 (2017). https://doi.org/10.1007/s12596-016-0367-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12596-016-0367-9

Keywords

Navigation