Advertisement

Journal of Optics

, Volume 46, Issue 2, pp 170–175 | Cite as

Design and characterization of metamaterial-based dual band absorber for infrared applications

  • Hamzeh Mahmoud Jaradat
  • Yassine Ait-El-Aoud
  • Alkim Akyurtlu
Research Article
  • 155 Downloads

Abstract

This work discusses a metamaterial based dual band absorber operating at mid infrared regime. The design is composed of periodic resonant pattern that mainly utilizes U-shaped and cut wire resonators as a building block for the single unit cell. The simulated results are obtained using the full electromagnetic wave simulation package CST MWS. The absorber is designed to possess two distinct absorption bands centered at 9.57 and 4 \(\upmu \hbox {m}\). The two bands are well separated with a first to second band ratio of 2.39. The sub-wavelength period size is measured to be 0.19 and 0.45 \(\lambda\) with respect to the first and second bands respectively. High absorption is also observed for wide range of incident angles. Samples of this design were fabricated and tested. The measured response shows two absorption peaks with better than 80 % absorption for both peaks.

Keywords

Dual band absorber Mid IR perfect absorption Drude–Lorentz effective model Metamaterial based absorbers 

Notes

Acknowledgments

The authors would like to acknowledge the assistance and support of Dr. X. Lu for the access to the CST simulation package, and Yingjie Zhang for his help with E-beam lithography. The authors also appreciate the Kostas Center.

References

  1. 1.
    Y. Avitzour, Y.A. Urzhumov, G. Shvets, Wide-angle infrared absorber based on a negative-index plasmonic metamaterial. Phys. Rev. B 79(4), 045131 (2009). doi: 10.1103/PhysRevB.79.045131 ADSCrossRefGoogle Scholar
  2. 2.
    H.M. Jaradat, A. Akyurtlu, Infrared absorber based on multiresonant structure. IEEE Antennas Wirel. Propag. Lett. 11, 1222–1225 (2012). doi: 10.1109/LAWP.2012.2223652 ADSCrossRefGoogle Scholar
  3. 3.
    Y. Zhao, Q. Hao, Y. Ma, M. Lu, B. Zhang, M. Lapsley, I. Khoo, T. Huang, Light-driven tunable dual-band plasmonic absorber using liquid-crystal-coated asymmetric nanodisk array. Appl. Phys. Lett. 100(5), 053119 (2012). doi: 10.1063/1.3681808 ADSCrossRefGoogle Scholar
  4. 4.
    H. Li, L. Yuan, B. Zhou, X. Shen, Q. Cheng, Ultrathin multiband gigahertz metamaterial absorbers. J. Appl. Phys. 110(1), 014909 (2011). doi: 10.1063/1.3608246 ADSCrossRefGoogle Scholar
  5. 5.
    S. Bhattacharyya, K.V. Srivastava, Triple band polarization-independent ultra-thin metamaterial absorber using electric field-driven LC resonator. J. Appl. Phys. 115, 064508 (2014). doi: 10.1063/1.4865273 ADSCrossRefGoogle Scholar
  6. 6.
    W. Li, X. Zhou, Y. Ying, X. Qiao, F. Qin, Q. Li, S. Che, Polarization-insensitive wide-angle multiband metamaterial absorber with a double-layer modified electric ring resonator array. AIP Adv. 5, 067151 (2015a). doi: 10.1063/1.4923194 ADSCrossRefGoogle Scholar
  7. 7.
    H. Lee, H.-M. Lee, A dualband metamaterial absorber based with resonant-magnetic structures. Prog. Electromagn. Res. Lett. 33, 1–12 (2012). doi: 10.2528/PIERL12050110 CrossRefGoogle Scholar
  8. 8.
    J. Zhong, Y. Huang, G. Wen, H. Sun, P. Wang, O. Gordon, Single-dual-band metamaterial absorber based on cross-circular-loop resonator with shorted stubs. Appl. Phys. A 108, 329–335 (2012). doi: 10.1007/s00339-012-6989-0 ADSCrossRefGoogle Scholar
  9. 9.
    L. Li, J. Wang, H. Du, J. Wang, S. Qu, Z. Xu, A band enhanced metamaterial absorber based on e-shaped all-dielectric resonators. AIP Adv. 5, 017147 (2015). doi: 10.1063/1.4907050 ADSCrossRefGoogle Scholar
  10. 10.
    H. Tao, C.M. Bingham, D. Pilon, K. Fan, A.C. Strikwerda, D. Shrekenhamer, W.J. Padilla, X. Zhang, R.D. Averitt, A dual band terahertz metamaterial absorber. J. Phys. D Appl. Phys. 43(22), 225102 (2010a). doi: 10.1088/0022-3727/43/22/225102 ADSCrossRefGoogle Scholar
  11. 11.
    Q.Y. Wen, H.W. Zhang, Y.S. Xie, Q.H. Yang, Y.L. Liu, Dual band terahertz metamaterial absorber: design, fabrication, and characterization. Appl. Phys. Lett. 95, 241111 (2009)Google Scholar
  12. 12.
    H. Cheng, S. Chen, H. Yang, J. Li, X. An, C. Gu, J. Tian, A polarization insensitive and wide-angle dual-band nearly perfect absorber in the infrared regime. J. Opt. 14, 085102 (2012a)ADSCrossRefGoogle Scholar
  13. 13.
    Z. Jiang, S. Yun, F. Toor, D. Werner, T. Mayer, Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating. ACS Nano 5(6), 4661–4647 (2011)CrossRefGoogle Scholar
  14. 14.
    P. Ding, E. Liang, G. Cai, W. Hu, C. Fan, Q. Xue, Dual-band perfect absorption and field enhancement by interaction between localized and propagating surface plasmons in optical metamaterials. J. Opt. 13, 075005 (2011)ADSCrossRefGoogle Scholar
  15. 15.
    J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, M. Qiu, High performance optical absorber based on a plasmonic metamaterial. Appl. Phys. Lett. 96(25), 251104 (2010)Google Scholar
  16. 16.
    X. Liu, T. Starr, A.F. Starr, W.J. Padilla, Infrared spatial and frequency selective metamaterial with near-unity absorbance. Phys. Rev. Lett 104(20), 207403 (2010)Google Scholar
  17. 17.
    C. Lin, R. Chern, H. Lin, Polarization-independent broad-band nearly perfect absorbers in the visible regime. Opt. Express 19(2), 415–424 (2011)ADSCrossRefGoogle Scholar
  18. 18.
    K. Chen, R. Adato, H. Altug, Dual-band perfect absorber for multispectral plasmon-enhanced infrared spectroscopy. ACS Nano 6(9), 7998–8006 (2012)CrossRefGoogle Scholar
  19. 19.
    D. Cheng, J. Xie, H. Zhang, C. Wang, N. Zhang, L. Deng, Pantoscopic and polarization-insensitive perfect absorbers in the middle infrared spectrum. Opt. Soc. Am. B 29(6), 1503–1510 (2012b)ADSCrossRefGoogle Scholar
  20. 20.
    T. Do, S. Bui, V. Le, T.H. Nguyen, T.T. Nguyen, Y. Lee, D. Vu, Design, fabrication and characterization of a perfect absorber using simple cut-wire metamaterials. Adv. Nat. Sci. Nanosci. Nanotechnol. 3(4), 045014 (2012)ADSCrossRefGoogle Scholar
  21. 21.
    M. Ordal, R. Bel, R. Alexander, L. Long, M. Querry, Optical properties of fourteen metals in the infrared and far infrared: Al, co, cu, au, fe, pb, mo, ni, pd, pt, ag, ti, v, and w. Appl. Opt. 24(24), 4493–4499 (1985)ADSCrossRefGoogle Scholar
  22. 22.
    J.F. Bauters et al., Ultra-low-loss high-aspect-ratio \({Si_3N_4}\) waveguides. Opt. Express 19(414), 3163–3174 (2011)ADSCrossRefGoogle Scholar
  23. 23.
    CST. Microwave studio [online]. available, (2010). URL http://www.cst.com/Content/Products/MWS/Overview.aspx
  24. 24.
    H. Tao, C.M. Bingham, D. Pilon, K. Fan, A.C. Strikwerda, D. Shrekenhamer, W.J. Padilla, X. Zhang, R.D. Averitt, A dual band terahertz metamaterial absorber. J. Phys. D Appl. Phys. 43(22), 225102 (2010b)ADSCrossRefGoogle Scholar
  25. 25.
    N. Zhang, P. Zhoun, S. Zou, X. Weng, J. Xie, L. Deng, Improving the mid-infrared energy absorption efficiency by using a dual-band metamaterial absorber. Mater. Int. 24, 128–133 (2014)Google Scholar
  26. 26.
    L.A. Butler, Thesis: design, simulation, fabrication, and characterizatics of terahertz metamaterials devices (The University of Alabama, Tuscaloosa, Alabama, 2012)Google Scholar

Copyright information

© The Optical Society of India 2016

Authors and Affiliations

  • Hamzeh Mahmoud Jaradat
    • 1
  • Yassine Ait-El-Aoud
    • 2
  • Alkim Akyurtlu
    • 2
  1. 1.Department of Telecommunication Engineering, Hijjawi Faculty of EngineeringYarmouk UniversityYarmoukJordan
  2. 2.Department of Electrical and Computer Engineering, Center for Photonics Electromagnetics, and Nanoelectronics (CPEN)University of Massachusetts LowellLowellUSA

Personalised recommendations