Journal of Optics

, Volume 46, Issue 2, pp 164–169 | Cite as

Flattop shaped creation based on strong focusing of circularly polarized vortex beams

Research Article
  • 157 Downloads

Abstract

Because circularly polarized vortex beam can be characterized as the linear superposition of radially polarized and azimuthally polarized components in the cylindrical coordinate. When investigating the focusing properties of the circularly polarized vortex beam, we must consider radially polarized vortex beam has azimuthal component and azimuthally polarized vortex beam has radial component after focusing. Due to this reason, the focusing properties of the circularly polarized vortex beams have been restudied based on the amending the tightly focusing formula of the circularly polarized vortex beam. The results show that not only the focusing of the single handedness of the circularly polarized vortex beam but also the focusing of superposition of two circularly polarized vortex beams with different topological charges and different handedness can generate the flat-top intensity shape. We also investigate the influence of amplitude ratio, waist radius and the aperture blocking on the flat-topped focus size.

Keywords

Physical optics Polarization Focusing Flattop beam 

Notes

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11264016 and 61265001), the Science and Technology Foundation of Jiangxi Province Education Department (Grant No. GJJ12172), and the National Science Foundation of Shanghai (Grant No. 16ZR1411600), China.

References

  1. 1.
    Q. Zhan, J.R. Leger, Focus shaping using cylindrical vector beams. Opt. Express 10(7), 324–331 (2002)ADSCrossRefGoogle Scholar
  2. 2.
    L.E. Helseth, Optical vortices in focal regions. Opt. Commun. 229(1–6), 85–91 (2004)ADSCrossRefGoogle Scholar
  3. 3.
    G. Therese Anita, N. Umamageswari, K. Prabakaran, T.V.S. Pillai, K.B. Rajesh, Effect of coma on tightly focused cylindrically polarized vortex beams. Opt. Laser Technol. 76, 1–5 (2016)ADSCrossRefGoogle Scholar
  4. 4.
    L. Rao, J. Pu, Z. Chen, P. Yei, Focus shaping of cylindrically polarized vortex beams by a high numerical-aperture lens. Opt. Laser Technol. 41(3), 241–246 (2009)ADSCrossRefGoogle Scholar
  5. 5.
    H. Wei, Y. Yang, W. Cheng, Q. Zhan, Vectorial optical field generator for the creation of arbitrarily complex fields. Opt. Express 21(18), 20692–20706 (2013)CrossRefGoogle Scholar
  6. 6.
    L. Allen, M.W. Beijersbergen, R.J.C. Spreeuw, J.P. Woerdman, Orbital angular momentum of light and the transformation of Laguerre-Gaussian Laser modes. Phys. Rev. A 45(11), 8185–8189 (1992)ADSCrossRefGoogle Scholar
  7. 7.
    M.W. Beijersbergen, L. Allen, H.E.L.Q. van der Ween, J.P. Woerdman, Astigmatic laser mode converters and transfer of orbital angular momentum. Opt. Commun. 96, 123–132 (1993)ADSCrossRefGoogle Scholar
  8. 8.
    W.M. Lee, X. Yuan, D. Tang, Optical tweezers with multiple optical forces using double-hologram interference. Opt. Express 11(3), 199–207 (2003)ADSCrossRefGoogle Scholar
  9. 9.
    S. Tao, X. Yuan, J. Lin, X. Peng, H. Niu, Fractional optical vortex beam induced rotation of particles. Opt. Express 13(20), 7726–7731 (2005)ADSCrossRefGoogle Scholar
  10. 10.
    K. Huang, P. Shi, G. Cao, K. Li, X. Zhang, Y. Li, Vector-vortex Bessel-Gauss beams and their tightly focusing properties. Opt. Lett. 36(6), 888–890 (2011)ADSCrossRefGoogle Scholar
  11. 11.
    Z. Bomzon, M. Gu, Space-variant geometrical phases in focused cylindrical light beams. Opt. Lett. 32(20), 3017–3019 (2007)ADSCrossRefGoogle Scholar
  12. 12.
    Y. Zhao, J.S. Edgar, G.D.M. Jeffries, D. McGloin, D.T. Chiu, Spin-to-orbital angular momentum conversion in a strongly focused optical beam. Phys. Rev. Lett. 99(7), 073901 (2007)ADSCrossRefGoogle Scholar
  13. 13.
    Y. Zhao, D. Shapiro, D. Mcgloin, D.T. Chiu, S. Marchesini, Direct observation of the transfer of orbital angular momentum to metal particles from a focused circularly polarized Gaussian beam. Opt. Express 17(25), 23316–23322 (2009)ADSCrossRefGoogle Scholar
  14. 14.
    B. Chen, J. Pu, Tight focusing of elliptically polarized vortex beams. Appl. Opt. 48(7), 1288–1294 (2009)ADSCrossRefGoogle Scholar
  15. 15.
    J. Shu, J.X. Pu, Y. Liu, Angular momentum conversion of elliptically polarized beams focused by high numerical-aperture phase Fresnel zone plates. Appl. Phys. B 104(3), 639–646 (2011)ADSCrossRefGoogle Scholar
  16. 16.
    Z. Bomzon, M. Gu, J. Shamir, Angular momentum and geometrical phases in tightly focused circularly polarized plane waves. Appl. Phys. Lett. 89, 241104 (2006)ADSCrossRefGoogle Scholar
  17. 17.
    Y. Iketaki, T. Watanabe, N. Bokor, M. Fujii, Investigation of the center intensity of first- and second-order Laguerre-Gaussian beams with linear and circular polarization. Opt. Lett. 32(16), 2357–2359 (2007)ADSCrossRefGoogle Scholar
  18. 18.
    Q. Zhan, Properties of circularly polarized vortex beams. Opt. Lett. 31(7), 867–869 (2006)ADSCrossRefGoogle Scholar
  19. 19.
    Z. Zhang, J. Pu, X. Wang, Tight focusing of radially and azimuthally polarized vortex beams through a uniaxial birefringent crystal. Appl. Opt. 47(12), 1963–1967 (2008)ADSCrossRefGoogle Scholar
  20. 20.
    S. Tripathi, K.C. Toussaint, Versatile generation of optical vector fields and vector beams using a non-interferometric approach. Opt. Express 20(10), 10788–10795 (2012)ADSCrossRefGoogle Scholar
  21. 21.
    S. Sato, Y. Kozawa, Hollow vortex beams. J. Opt. Soc. Am. A 26(1), 142–146 (2009)ADSCrossRefGoogle Scholar
  22. 22.
    H. Chen, S. Tripathi, K.C. Toussaint, Demonstration of flat-top focusing under radial polarization illumination. Opt. Lett. 39(4), 834–837 (2014)ADSCrossRefGoogle Scholar
  23. 23.
    F. Wang, S. Zhu, Y. Cai, Experimental study of the focusing properties of a Gaussian Schell-model vortex beam. Opt. Lett. 36(16), 3281–3283 (2011)ADSCrossRefGoogle Scholar
  24. 24.
    E. Wolf, Electromagnetic diffraction in optical system I1959 An integral representation of the image field. Proc. R. Soc. Lond. Ser. A 253, 349–357 (1959)ADSCrossRefMATHGoogle Scholar
  25. 25.
    K.S. Youngworth, T.G. Brown, Focusing of high numerical aperture cylindrical-vector beams. Opt. Express 7(2), 77–87 (2000)ADSCrossRefGoogle Scholar
  26. 26.
    K. Huang, P. Shi, X.-L. Kang, X. Zhang, Y.-p. Li, Design of DOE for generating a needle of a strong longitudinally polarized field. Opt. Lett. 35(7), 965–967 (2010)ADSCrossRefGoogle Scholar

Copyright information

© The Optical Society of India 2016

Authors and Affiliations

  • Wen Yuan
    • 1
  • Qin Guo
    • 1
  • Minghuang Sang
    • 1
  • Yanfang Yang
    • 2
  1. 1.College of Physics and Communication ElectronicsJiangxi Normal UniversityNanchangChina
  2. 2.Department of Physics, College of SciencesShanghai UniversityShanghaiChina

Personalised recommendations