Advertisement

Journal of Optics

, Volume 46, Issue 2, pp 95–99 | Cite as

Controllable nano-crack surface for surface enhanced Raman scattering sensing

  • Liangping Xia
  • Zheng Yang
  • Man Zhang
  • Shaoyun Yin
  • Qiling Deng
  • Chunlei Du
Research Article

Abstract

Raman spectrum of rhodamine 6G on a controllable nano-crack surface fabricated with imprinting-induced crack is experimentally studied and an average Raman enhancement (EF) of more than 107 is obtained. With the finite difference time domain simulations, the gap coupling resonance of the nano-cracks is analyzed and the raised enhancement electromagnetic field is obtained. For the reproducibility of the nano-crack pattern with width of 30 nm, it is a good candidate for the repeatable and high sensitive surface enhanced Raman scattering sensing.

Keywords

Controllable nano-crack surface Surface enhanced Raman scattering Coupling enhancement Reproducible 

Notes

Acknowledgments

This work was supported by National Natural Science Foundation of China (61504147, 2140714, 51503206); West Light Foundation of Chinese Academy of Sciences; Fundamental & advanced research projects of Chongqing, China (cstc2013jcyjC00001), Application development project of Chongqing, China (cstc2013yykfC00007), Scientific equipment research project of Chinese Academy of Sciences (Development of THz imaging spectrometer for biomacromolecules) and Chongqing Micro -nano fabrication and inspection Public service platform (cstc2014pt-fwjg0003).

References

  1. 1.
    W.R. Premasiri, D.T. Moir, M.S. Klempner, N. Krieger, G. Jones II, L.D. Ziegler, Characterization of the surface enhanced Raman scattering (SERS) of bacteria. J. Phys. Chem. B 109(1), 312–320 (2005)CrossRefGoogle Scholar
  2. 2.
    T. Chen, H. Wang, G. Chen, Y. Wang, Y. Feng, W.S. Teo, T. Wu, H. Chen, Hotspot-induced transformation of surface-enhanced Raman scattering fingerprints. ACS Nano 4(6), 3087–3094 (2010)CrossRefGoogle Scholar
  3. 3.
    E. Grow, L.L. Wood, J.L. Claycomb, P.A. Thompson, New biochip technology for label-free detection of pathogens and their toxins. J. Microbiol. Methods 53(2), 221–233 (2003)CrossRefGoogle Scholar
  4. 4.
    K. Kneipp, Y. Wang, H. Kneipp, L.T. Perelman, I. Itzkan, R.R. Dasari, M.S. Feld, Single molecule detection using surface-enhanced Raman scattering (SERS). Phys. Rev. Lett. 78, 1667–1670 (1997)ADSCrossRefGoogle Scholar
  5. 5.
    L. Xia, Z. Yang, S. Yin, W. Guo, S. Li, W. Xie, D. Huang, Q. Deng, H. Shi, H. Cui, C. Du, Surface enhanced Raman scattering substrate with metallic nanogap array fabricated by etching the assembled polystyrene spheres array. Opt. Express 21(9), 11349–11355 (2013)ADSCrossRefGoogle Scholar
  6. 6.
    E.J. Smythe, M.D. Dickey, J. Bao, G.M. Whitesides, F. Capasso, Optical antenna arrays on a fiber facet for in situ surface-enhanced Raman scattering detection. Nano Lett. 9(3), 1132–1138 (2009)ADSCrossRefGoogle Scholar
  7. 7.
    L. Xia, Z. Yang, S. Yin, W. Guo, J. Du, C. Du, Hole arrayed metal-insulator-metal structure for surface enhanced Raman scattering by self-assembling polystyrene spheres. Front. Phys. 9(1), 64–68 (2014)CrossRefGoogle Scholar
  8. 8.
    N.M.B. Perney, J.J. Baumberg, M.E. Zoorob, M.D.B. Charlton, S. Mahnkopf, C.M. Netti, Opt. Express 14(2), 847–857 (2006)ADSCrossRefGoogle Scholar
  9. 9.
    S.M. Mahurin, J. John, M.J. Sepaniak, S. Dai, A reusable surface-enhanced raman scattering (SERS) substrate prepared by atomic layer deposition of alumina on a multi-layer gold and silver film. Appl. Spectrosc. 65(4), 417–422 (2011)ADSCrossRefGoogle Scholar
  10. 10.
    Y. Chen, L. Karvonen, A. Säynätjoki, C. Ye, A. Tervonen, S. Honkanen, Ag nanoparticles embedded in glass by two-step ion exchange and their SERS application. Opt. Mater. Express 1(2), 164–172 (2011)CrossRefGoogle Scholar
  11. 11.
    T.H.P. Chang, D.P. Kern, L.P. Muray, Arrayed miniature electron beam columns for high throughput sub-100 nm lithography. J. Vac. Sci. Technol. B 10(6), 2743–2748 (1992)CrossRefGoogle Scholar
  12. 12.
    K.H. Nam, I.H. Park, S.H. Ko, Patterning by controlled cracking. Nature 485(7397), 221–224 (2012)ADSCrossRefGoogle Scholar
  13. 13.
    E. Alaca, C. Ozcan, G. Anlas, Deterministic assembly of channeling cracks as a tool for nanofabrication. Nanotechnology 21(5), 055301 (2010)ADSCrossRefGoogle Scholar
  14. 14.
    S. Jebril, M. Elbahri, G. Titazu, K. Subannajui, S. Essa, F. Niebelschutz, C.C. Rohlig, V. Cimalla, O. Ambacher, B. Schmidt, D. Kabiraj, D. Avasti, R. Adelung, Integration of thin-film-fracture-based nanowires into microchip fabrication. Small 4(12), 2214–2221 (2008)CrossRefGoogle Scholar
  15. 15.
    L. Xia, M. Zhang, Z. Yang, H. Cui, S. Yin, S. Hu, C. Du, Nanochannel fabrication by imprinting-induced cracks. Appl. Phys. Lett. 104, 073104 (2014)ADSCrossRefGoogle Scholar
  16. 16.
    K. Li, L. Clime, B. Cui, T. Veres, Surface enhanced Raman scattering on long-range ordered noble-metal nanocrescent arrays. Nanotechnology 19, 145305 (2008)ADSCrossRefGoogle Scholar
  17. 17.
    R. Stosch, F. Yaghobian, T. Weimann, R.J.C. Brown, M.J.T. Milton, B.G. Uttler, Lithographical gap-size engineered nanoarrays for surface-enhanced Raman probing of biomarkers. Nanotechnology 22, 105303 (2011)ADSCrossRefGoogle Scholar

Copyright information

© The Optical Society of India 2016

Authors and Affiliations

  • Liangping Xia
    • 1
  • Zheng Yang
    • 1
  • Man Zhang
    • 2
  • Shaoyun Yin
    • 1
  • Qiling Deng
    • 2
  • Chunlei Du
    • 1
  1. 1.Key Laboratory of Multi-scale Manufacturing Technology, Chongqing Institute of Green and Intelligent TechnologyChinese Academy of SciencesChongqingChina
  2. 2.Institute of Optics and ElectronicsChinese Academy of SciencesChengduChina

Personalised recommendations