Skip to main content
Log in

Target detection for hyperspectral image based on multi-scale analysis

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

To further improve target detection performance of hyperspectral image, this paper presents a novel method named multi-scale analysis-based target detection (MATD). The proposed method first applies multi-scale wavelet analysis technology to extract multi-scale features of hyperspectral data. Then, these features are converted into a tensor form, and is processed and analyzed by using tensor analysis method. Through solving the tensor subspace, the reduced-dimension feature coefficients can be extracted. Finally, based on these feature coefficients, a better target detection result can be obtained by using the detection algorithm. Experimental results of real world hyperspectral data show that the proposed MATD method can effectively improve detection performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Y. T. Wang, S. Q. Huang, D. Z. Liu, B. H. Wang, A new band removed selection method for target detection in hyperspectral image. J. Opt. 42(3), 208–213 (2013)

    Article  Google Scholar 

  2. Jolliffe I T. Principal component analysis, 2nd edition, springer, 2002.

  3. He X F, Cai D, Yan S C, et al. Neighborhood preserving embedding. Proceedings of the 10th IEEE Int’l Conf. Computer vision (ICCV’05), Beijing, China, 2005: 1208–1213.

  4. He X F, Niyogi P. Locality preserving projections. Proceedings of Neural Information Processing Systerm, Vancouver, 2003.

  5. T. H. Zhang, J. Yang, D. L. Zhao, X. L. Ge, Linear local tangent space alignment and application to face recognition. Neurocomputing Letters. 70(7–9), 1547–1553 (2007)

    Article  Google Scholar 

  6. Lathauwer L D. Signal Processing based on Multilinear Algebra. Ph. D, Katholike Universiteit Leuven, Leuven, 1997.

  7. H. Lu, K. N. Plataniotis, A. N. Venetsanopoulos, A survey of multilinear subspace learning for tensor data. Pattern Recognit. 44(7), 1540–1551 (2011)

    Article  MATH  Google Scholar 

  8. Bengua J A, Phien H N, Tuan H D. Optimal feature extraction and classification of tensors via matrix product state decomposition\\Big Data, 2015 I.E. international Congress on, New York, 669–672.

  9. Z. Hao, L. He, B. Chen, et al., A linear support higher-order tensor machine for classification. IEEE Trans. Image Process. 22(7), 2911–2920 (2013)

    Article  ADS  Google Scholar 

  10. L. Zhang, F, Zhang L P, Tao D C, et al. A sparse and discriminative tensor to vector projection for human gait feature representation. Signal Processing 106, 245–252 (2015)

    Google Scholar 

  11. L. Zhang, F, Zhang L P, Tao D C, et al. Compression of hyperspectral remote sensing images by tensor approach. Neurocomputing 147, 358–363 (2015)

    Google Scholar 

  12. X. F. Liu, S. Bourennane, C. Fossati, Denoising of hyperspectral images using the PARAFAC model and statistical performance analysis. IEEE Trans. Geosci. Remote Sens. 50(10), 3717–3724 (2012)

    Article  ADS  Google Scholar 

  13. G. Lu, L. Halig, D. Wang, et al., Spectral-spatial classification using tensor modeling for cancer detection with hyperspectral imaging. Proc. SPIE Int. Soc. Opt. Eng. 9034, 903413 (2014)

    Google Scholar 

  14. I. Daubechies, Ten lectures on wavelets [M] (Society for industrial and applied mathematics, Philadelphia, 1992)

    Book  MATH  Google Scholar 

  15. X. Liu, S. Bourennane, C. Fossati, Denoising of hyperspectral images using the PARAFAC model and statistical performance analysis. IEEE Trans. Geosci. Remote Sens. 50(10), 3717–3724 (2012)

    Article  ADS  Google Scholar 

  16. H. Gholizadeh et al., A decision fusion framework for hyperspectral subpixel target detection. Photogrammetrie - Fernerkundung - Geoinformation 3, 267–280 (2012)

  17. S. Kraut, L. L. Scharf, The CFAR adaptive subspace detector is a scale-invariant GLRT. IEEE Trans. Signal Process. 47(9), 2538–2541 (1999)

    Article  ADS  Google Scholar 

  18. D. Manolakis, D. Marden, G. A. Shaw, Hyperspectral image processing for automatic target detection applications. Lincoln Laboratory Journal 14(1), 79–116 (2003)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under project No. 41174093 and No. 41574008.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yiting Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Huang, S., Liu, Z. et al. Target detection for hyperspectral image based on multi-scale analysis. J Opt 46, 75–82 (2017). https://doi.org/10.1007/s12596-016-0334-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12596-016-0334-5

Keywords

Navigation