Journal of Optics

, Volume 41, Issue 4, pp 224–230 | Cite as

Light scattering by two concentric gold cylindrical hollow nanoshell

Research Article
  • 146 Downloads

Abstract

The scattering cross section of two concentric gold cylindrical hollow nanoshell (GCHNS) is obtained as a function of wavelength at different thicknesses of two gold shells and intershell spacing between them. Theoretical calculations show that both the intensity and position of the scattering peak depend on these parameters for two concentric GCHNS and therefore the scattering peak can be tuned by changing these parameters.

Keywords

Nanoshell Nanostructure Light scattering Cross section 

References

  1. 1.
    Y.Y. Yu, S.S. Chang, C.L. Lee, C.R.C. Wang, Gold nanorods: electrochemical synthesis and optical properties. J. Phys. Chem. B 101(34), 6661–6664 (1997)CrossRefGoogle Scholar
  2. 2.
    H.S. Zhou, I. Honma, H. Komiyama, J.W. Haus, Controlled synthesis and quantum-size effect in gold-coated nanoparticles. Phys. Rev. B 50(16), 12052–12056 (1994)ADSCrossRefGoogle Scholar
  3. 3.
    T.R. Jensen, M.L. Duval, K.L. Kelly, A.A. Lazarides, G.C. Schatz, R.P. Van Duyne, Nanosphere lithography: effect of the external dielectric medium on the surface plasmon resonance spectrum of a periodic array of silver nanoparticles. J. Phys. Chem. B 103(13), 2394–2401 (1999)CrossRefGoogle Scholar
  4. 4.
    Y. Yin, Y. Lu, B. Gates, Y. Xia, Synthesis and characterization of mesoscopic hollow spheres of ceramic materials with functionalized interior surfaces. Chem. Mater. 13(4), 1146–1148 (2001)CrossRefGoogle Scholar
  5. 5.
    Z. Zhong, Y. Yin, B. Gates, Y. Xia, Preparation of mesoscale hollow spheres of TiO2 and SnO2 by templating against crystalline arrays of polystyrene beads. Adv. Mater. 12, 206–209 (2000)CrossRefGoogle Scholar
  6. 6.
    T. Ung, L.M. Liz-Marzan, P. Mulvaney, Controlled method for silica coating of silver colloids. Influence of coating on the rate of chemical reactions. Langmuir 14(14), 3740–3748 (1998)CrossRefGoogle Scholar
  7. 7.
    F. Caruso, R.A. Caruso, H. Mohwald, Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating. Science 282(5391), 1111–1114 (1998)ADSCrossRefGoogle Scholar
  8. 8.
    W. Stober, A. Fink, E. Bohn, Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid Interface Sci. 26(1), 62–69 (1968)CrossRefGoogle Scholar
  9. 9.
    E. Prodan, C. Radloff, N.J. Halas, P. Nordlander, A hybridization model for the plasmon response of complex nanostructures. Science 302(5644), 419–422 (2003)ADSCrossRefGoogle Scholar
  10. 10.
    K. Kamata, Y. Lu, Y. Xia, Synthesis and characterization of monodispersed core-shell spherical colloids with movable cores. J. Am. Chem. Soc. 125(9), 2384–2385 (2003)CrossRefGoogle Scholar
  11. 11.
    M. Kim, K. Sohn, H.B. Na, T. Hyeon, Synthesis of nanorattles composed of gold nanoparticles encapsulated in mesoporous carbon and polymer shells. Nano Lett. 2(12), 1383–1387 (2002)ADSCrossRefGoogle Scholar
  12. 12.
    Y. Sun, B. Mayers, Y. Xia, Metal nanostructures with hollow interiors. Adv. Mater. 15, 641–646 (2003)CrossRefGoogle Scholar
  13. 13.
    Y. Sun, B.T. Mayers, Y. Xia, Template-engaged replacement reaction: a one-step approach to the large-scale synthesis of metal nanostructures with hollow interiors. Nano Lett. 2(5), 481–485 (2002)ADSCrossRefGoogle Scholar
  14. 14.
    Y. Sun, Y. Xia, Mechanistic study on the replacement reaction between silver nanostructures and chloroauric acid in aqueous medium. J. Am. Chem. Soc. 126(12), 3892–3901 (2004)CrossRefGoogle Scholar
  15. 15.
    Y. Sun, Y. Xia, Alloying and dealloying processes involved in the preparation of metal nanoshells through a galvanic replacement reaction. Nano Lett. 3(11), 1569–1572 (2003)ADSCrossRefGoogle Scholar
  16. 16.
    Y.G. Sun, Y.N. Xia, Multiple-walled nanotubes made of metals. Adv. Mater. 16(3), 264–268 (2004)CrossRefGoogle Scholar
  17. 17.
    J.J. Mock, S.J. Oldenburg, D.R. Smith, D.A. Schultz, S. Schultz, Composite plasmon resonant nanowires. Nano Lett. 2(5), 465–469 (2002)ADSCrossRefGoogle Scholar
  18. 18.
    M. Barbic, J.J. Mock, D.R. Smith, S. Schultz, Single crystal silver nanowires prepared by the metal amplification method. J. Appl. Phys. 91(11), 9341–9345 (2002)ADSCrossRefGoogle Scholar
  19. 19.
    J. Zhu, Theoretical study of the light scattering from gold nanotubes: effects of wall thickness. Mater. Sci. Eng. A 454–455, 685–689 (2007)Google Scholar
  20. 20.
    R.D. Averitt, S.L. Westcott, N.J. Halas, Linear optical properties of gold nanoshells. J. Opt. Soc. Am. B 16(10), 1824–1832 (1999)ADSCrossRefGoogle Scholar
  21. 21.
    U. Schroter, A. Dereux, Surface plasmon polaritions on metal cylinders with dielectric core. Phys. Rev. B 64, 125420 (2001)ADSCrossRefGoogle Scholar
  22. 22.
    J.M. Oliva, S.K. Gray, Theoretical study of dielectrically coated metallic nanowires. Chem. Phys. Lett. 379(3–4), 325–331 (2003)ADSCrossRefGoogle Scholar
  23. 23.
    H. Khosravi, N. Daneshfar, A. Bahari, Theoretical study of the light scattering from two alternating concentric double silica-gold nanoshell. Phys. Plasmas 17, 053302 (2010)ADSCrossRefGoogle Scholar
  24. 24.
    C.F. Bohren, Absorption and Scattering of Light by Small Particles (A Wiley Interscience Publication, New York, 1983)Google Scholar
  25. 25.
    H.C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1981)Google Scholar
  26. 26.
    P.B. Johnson, R.W. Christy, Optical constants of the noble metals. Phys. Rev. B 6(12), 4370–4379 (1972)ADSCrossRefGoogle Scholar
  27. 27.
    U. Kreibig, M. Vollmer, Optical Properties of Metal Clusters (Springer, New York, 1995)Google Scholar

Copyright information

© Optical Society of India 2012

Authors and Affiliations

  1. 1.Department of PhysicsLorestan UniversityLorestanIran

Personalised recommendations