Advertisement

Journal of Optics

, Volume 42, Issue 1, pp 25–36 | Cite as

Rendering Morpho butterflies based on high accuracy nano-optical simulation

  • Naoki OkadaEmail author
  • Dong Zhu
  • Dongsheng Cai
  • James B. Cole
  • Makoto Kambe
  • Shuichi Kinoshita
Research Article

Abstract

A rendering method, based on high accuracy nano-optical simulations, is developed and applied to render the iridescent colors of the Morpho butterfly. The wings of the male display blue structural colors and backscatterings. In order to capture the Morpho butterfly features, subwavelength interactions on the scales must be rigorously taken into account. We calculate optical interference in the subwavelength scale structure using the high accuracy nonstandard finite-difference time-domain method, and validate the results by comparing with experimental measurements. Using our simulation results, realistic Morpho butterfly images are rendered.

Keywords

Morpho butterfly Iridescence Photorealistic rendering FDTD simulation Physically based model 

Notes

Acknowledgments

We deeply appreciate the financial support of Grant-in-Aid for Japan Society for the Promotion of Science (JSPS) Fellows.

Supplementary material

Supplementary Material

(MP4 39473 kb)

References

  1. 1.
    W.K. Dai, R.C. Chang, Z.C. Shih, Fractal patern for a butterfly wing. Vis. Comput. Nat. 11, 177–187 (1995)Google Scholar
  2. 2.
    A.R. Parker, 515 million years of structural colour. J. Optic. Pure. Appl. Optic. 2(6), 15–28 (2000)ADSCrossRefGoogle Scholar
  3. 3.
    P. Vukusic, J.R. Sambles, C.R. Lawrence, R.J. Wootton, Structural colour: now you see it—now you don’t. Nature 410, 36 (2001)ADSCrossRefGoogle Scholar
  4. 4.
    P. Vukusic, J.R. Sambles, Photonic structures in biology. Nature 424, 852–855 (2003)ADSCrossRefGoogle Scholar
  5. 5.
    A. Lefohn, R. Caruso, E. Reinhard, B. Budge, An ocularist’s approach to human iris synthesis. IEEE Comput. Graph. Appl. 23(6), 70–75 (2003)CrossRefGoogle Scholar
  6. 6.
    J. Egholm, N. J. Christensen, A phenomenological representation of iridescent colors in butterfly wings. in WSCG Short Communications conference proceedings (WSCG, 2004)Google Scholar
  7. 7.
    S. Kinoshita, S. Yoshioka, Structrual Colors in Biological Systems (Osaka University Press, 2005)Google Scholar
  8. 8.
    M.W.Y. Lam, G.V.G. Baranoski, A predictive light transport model for the human iris. Comput. Graph. Forum 25(3), 359–368 (2006)CrossRefGoogle Scholar
  9. 9.
    K. Ward, F. Bertails, T. Y. Kim, S. R. Marschner, M. P. Cani, M. C. Lin, A survey on hair modeling: Styling, simulation, and rendering. IEEE Trans. Visual. Comput. Graph., 13(2), (2007)Google Scholar
  10. 10.
    S. Kinoshita, S. Yoshioka, J. Miyazaki, Physics of structural colors. Institute of Physics (IOP) Publishing, Reports on Progress in Physics, 71(7), 076401 (2008)Google Scholar
  11. 11.
    J.B. Cole, High-accuracy yee algorithm based on nonstandard finite differences: New developments and verifications. IEEE Trans. Antenn. Propag. 50(9), 1185–1191 (2002)ADSCrossRefGoogle Scholar
  12. 12.
    N. Okada, J.B. Cole, Simulation of whispering gallery modes in the mie regime using the nonstandard finite-difference time domain algorithm. J. Optic. Soc. Am. B 27(4), 631–639 (2010)ADSCrossRefGoogle Scholar
  13. 13.
    B. Gralak, G. Tayeb, S. Enoch, Morpho butterflies wings color modeled with lamellar grating theory. Opt. Express 9(11), 567–578 (2001)ADSCrossRefGoogle Scholar
  14. 14.
    N. Shichijo, S. Iwasawa, Y. Kawaguchi, Rendering methods for models with complicated micro structures. The 14th International Conference on Artificial Reality and Telexistence (Nov. 2004)Google Scholar
  15. 15.
    Y. Sun, Rendering biological iridescences with rgb-based renderers. ACM Trans. Graph. 25(1), 100–129 (2006)CrossRefGoogle Scholar
  16. 16.
    I. Sadeghi, H. W. Jensen, A physically based anisotropic iridescence model for rendering morpho butterflies photo-realistically (UCSD Research EXPO, 2008)Google Scholar
  17. 17.
    L. Plattner, Optical properties of the scales of morpho rhetenor butterflies: theoretical and experimental investigation of the back-scattering of light in the visible spectrum. J. R. Soc. Interface 22(1), 49–59 (2012)Google Scholar
  18. 18.
    S. Kinoshita, S. Yoshioka, Y. Fujii, N. Okamoto, Photophysics of structural color in the morpho butterflies. Forma 17, 103–121 (2002)Google Scholar
  19. 19.
    D. Jackel, B. Walter, Modeling and rendering of the atmosphere using mie-scattering. Comput. Graph. Form 16(4), 201–210 (1997)CrossRefGoogle Scholar
  20. 20.
    M.J. Harris, A. Lastra, Real-time cloud rendering. EUROGRAPHICS 20(3), 201–210 (2001)Google Scholar
  21. 21.
    K. Iwasaki, K. Matsuzawa, T. Nishita, Real-time rendering of soap bubbles taking into account light interference. in Proceedings of the Computer Graphics International (IEEE Computer Society, 2004), pp. 344–348Google Scholar
  22. 22.
    R. Shimada, Y. Kawaguchi, Brdf estimation system for structural colors. in Proceedings of the 2005 international conference on Augmented tele-existence (ACM, 2005), pp. 16–21Google Scholar
  23. 23.
    J. Egholm, N. J. Christensen, Rendering compact discs and other diffractive surfaces illuminated by linear light sources. in Proceedings of the 4th international conference on Computer graphics and interactive techniques in Australasia and Southeast Asia (ACM, 2006) pp. 329–332Google Scholar
  24. 24.
    J. Stam, Diffraction shaders. in SIGGRAPH 99 Conference Proceedings, Annual Conference Series (ACM, 1999), pp. 101–110Google Scholar
  25. 25.
    H. Hirayama, K. Kaneda, H. Yamashita, Y. Monden, An accurate illumination model for objects coated with multilayer films. in Proceedings of Eurographics 2000 Short Presentations (Eurographics, 2000), pp. 143–150Google Scholar
  26. 26.
    C. Lindsay, E. AGU, Physically-based real-time diffraction using spherical harmonics. in Advances in Visual Computing, vol 4292 (Springer, Berlin, 2006), pp. 505–517Google Scholar
  27. 27.
    S.B. Oh, S. Kashyap, R. Garg, S. Chandran, R. Raskar, Rendering wave effects with augmented light field. Comput. Graph. Forum 29(2), 507–516 (2010)CrossRefGoogle Scholar
  28. 28.
    A. Saito, Y. Miyamura, M. Nakajimaad Y. Ishikawa, K. Sogo, Y. Kuwahara, Y. Hirai, Reproduction of the morpho blue by nanocasting lithography. J. Vac. Sci. Tech. B, 24(3248), (2006)Google Scholar
  29. 29.
    A. Saito, Y. Miyamura, Y. Ishikawa, J. Murase, M. A. Kasaya, Y. Kuwahara, Reproduction, mass production, and control of the morpho butterfly’s blue. Proceedings SPIE, 7205, (2009)Google Scholar
  30. 30.
    A. Saito, Material design and structural color inspired by biomimetic approach. Sci. Tech. Adv. Mat. 12(064709), (2011)Google Scholar
  31. 31.
    M. Kambe, D. Zhu, S. Kinoshita, Origin of retroreflection from a wing of the morpho butterfly. J. Phys. Soc. Jap. 80(5), 054801 (2011)ADSCrossRefGoogle Scholar
  32. 32.
    S. Banerjee, Z. Dong, Optical characterization of iridescent wings of morpho butterflies using a high accuracy nonstandard finite-difference time-domain algorithm. Optic. Rev. 14(6), 359–361 (2007)ADSCrossRefGoogle Scholar
  33. 33.
    D. Zhu, S. Kinoshita, D. Cai, J.B. Cole, Investigation of structural colors in morpho butterflies using the nonstandard finite-difference time-domain method: effects of alternately stacked shelves and ridge density. Phys. Rev. E(80), 051924 (2009)Google Scholar
  34. 34.
    R.T. Lee, G.S. Smith, Detailed electromagnetic simulation for the structural color of butterfly wings. Appl. Opt. 48(21), 4177–4190 (2009)ADSCrossRefGoogle Scholar
  35. 35.
    B. E. Smits, G. W. Meyer, Newton s colors: Simulating interference phenomena in realistic image synthesis. in Proceedings Eurographics Workshop on Photosimulation, Realism and Physics in Computer Graphics (Eurographics, 1990), pp. 185–194Google Scholar
  36. 36.
    J. D. Joannopoulos, R. D. Meade, J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University Press, 1995)Google Scholar
  37. 37.
    H. Tabata, K. Kumazawa, M. Funakawa, J. Takimoto, M. Akimoto, Microstructures and optical properties of scales of butterfly wings. Optic. Rev. 3(2), 139–145 (1996)ADSCrossRefGoogle Scholar
  38. 38.
    P. W. Barber, S. C. Hill, Light Scattering by Particles: Computational Methods (World Scientific, 1989)Google Scholar
  39. 39.
    R. E. Mickens, Nonstandard Finite Difference Models of Differential Equation (World Scientific, 1994)Google Scholar
  40. 40.
    N. Okada, J. B. Cole, A nonstandard finite difference time domain algorithm for berenger’s perfectly matched layer. Appl. Comput. Electromagnet. Soc. J. 26(2), (2011)Google Scholar
  41. 41.
    R.J. Luebbers, D. Ryan, J. Beggs, A two-dimensional time-domain near-zone to far-zone transformation. IEEE Trans. Antenn. Propag. 40(7), 848–851 (1992)ADSCrossRefGoogle Scholar
  42. 42.
    G. Wyszecki, W. S. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulae (Wiley-Interscience, 1982)Google Scholar

Copyright information

© Optical Society of India 2012

Authors and Affiliations

  • Naoki Okada
    • 1
    Email author
  • Dong Zhu
    • 2
  • Dongsheng Cai
    • 1
  • James B. Cole
    • 1
  • Makoto Kambe
    • 2
  • Shuichi Kinoshita
    • 2
  1. 1.Graduate School of Systems and Information EngineeringUniversity of TsukubaTsukubaJapan
  2. 2.Graduate School of Frontier BiosciencesOsaka UniversityOsakaJapan

Personalised recommendations