Skip to main content
Log in

Single cell spectrally opposed responses: opponent colours or complementary colours?

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

In the 1950s De Valois and colleagues, followed by other researchers, discovered spectrally opposed single cells in the primate LGN. They called them Red-Green and Yellow-Blue opponent colour cells, interpreting them as the biological implementation of Hering’s opponent colours theory. By the 1990s, it became increasingly clear the growing data on such cells did not match Hering’s unique hues Red-Green, Yellow-Blue. Yet these cells today remain misleadingly described by opponent-colour or similar various terms, with no agreed best term. This paper reviews much of the data to show spectrally opposed responses in primate retina, LGN, and striate cortex are complementary colours of three types: Blue-Yellow, Red-Cyan, and (less often) Green-Magenta. Such cells may be termed ‘complementary colour cells’ as a generic category, and further specified by the respective hue pair, e.g. Red-Cyan. (In psychophysics, ‘complementary colours’ refers to a pair of colour stimuli that admix white.) The difference between opponent colours and complementary colours is more than semantic: it concerns colour constancy, which in theory is aided by complementary colour cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. G. Svaetichin, Spectral response curves from single cones. Acta. Physiol. Scand. 39(Suppl. 134), 19–46 (1956)

    Google Scholar 

  2. G. Svaetichin, E.F. MacNichol Jr., Retinal mechanisms of chromatic and achromatic vision. Ann. N.Y. Acad. Sci. 74, 385–404 (1958)

    Article  ADS  Google Scholar 

  3. E. Hering, Zur Lehre vom Lichtsinne (Carl Gerold’s Sohn, Wien, 1878). A theory of the light sense

    Google Scholar 

  4. D. Jameson, L.M. Hurvich, Some quantitative aspects of an opponent colors theory. I. Chromatic responses and spectral saturation. J. Opt. Soc. Am. 45, 546–552 (1955)

    Article  ADS  Google Scholar 

  5. L.M. Hurvich, D. Jameson, Some quantitative aspects of an opponent colors theory. II. Brightness, saturation and hue in normal and dichromatic vision. J. Opt. Soc. Am. 45, 602–616 (1955)

    Article  ADS  Google Scholar 

  6. R.L. De Valois, C.J. Smith, S.T. Kital, A.J. Karoly, Response of single cells in monkey LGN to monochromatic light. Science 127, 238–239 (1958)

    Article  ADS  Google Scholar 

  7. T.N. Wiesel, D.H. Hubel, Spatial and chromatic interactions in the lateral geniculate body of the rhesus monkey. J. Neurophysiol. 29, 1115–1156 (1966)

    Google Scholar 

  8. H.G. Wagner, E.F. MacNichol Jr., M.L. Wolbarsht, Opponent color responses in retinal ganglion cells. Science 13, 1314 (1960)

    Article  ADS  Google Scholar 

  9. K.I. Naka, W.A.H. Rushton, S-potentials from colour units in the retina of fish (cyprinidae). J. Physiol(London) 185, 536–555 (1966)

    Google Scholar 

  10. N.W. Daw, Goldfish retina: organisation for simultaneous color contrast. Science 158, 942–946 (1967)

    Article  ADS  Google Scholar 

  11. A.L. Byzov, Y.A. Trifonov, The response to electrical stimulation of horizontal cells in the carp retina. Vis. Res. 8, 817–822 (1968)

    Article  Google Scholar 

  12. P. Gouras, E. Zrenner, Color coding in the primate retina. Vis. Res. 21, 1591–1598 (1981)

    Article  Google Scholar 

  13. K. Fukurotani, Color information coding of horizontal-cell responses in fish retina. Color. Res. Appl. 7, 146–148 (1982)

    Article  Google Scholar 

  14. J.-I. Toyoda, M. Fujimoto, Analysis of neural mechanisms mediating the effect of horizontal cell polarization. Vis. Res. 23, 1143–1150 (1983)

    Article  Google Scholar 

  15. A.M. Derrington, J. Krauskopf, P. Lennie, Chromatic mechanisms in the lateral geniculate nucleus of macaque. J. Physiol(London) 357, 241–265 (1984)

    Google Scholar 

  16. T.E. Ogden, G.G. Mascetti, R. Pierantoni, The outer horizontal cell of the frog retina: morphology, receptor input, and function. Invest. Ophthalmol. Vis. Sci. 26, 643–656 (1985)

    Google Scholar 

  17. V.I. Govardoskii, A.L. Byzov, L.V. Zueva, N.A. Polisczuk, E.A. Baburina, Spectral characteristics of photoreceptors and horizontal cells in the retina of the Siberian sturgeon Acipenser baeri brandt. Vis. Res. 27, 179–189 (1991)

    Google Scholar 

  18. R.C. Reid, R.M. Shapley, Spatial structure of cone inputs to receptive fields in primate lateral geniculate nucleus. Nature 356, 716–718 (1992)

    Article  ADS  Google Scholar 

  19. M.J.M. Lankheet, P. Lennie, J. Krauskopf, Distinctive characteristics of subclasses of red–green P-cells in LGN of macaque. Vis. Neurosci. 15, 37–46 (1998)

    Google Scholar 

  20. C.R. Michael, Color vision mechanisms in monkey striate cortex: dual-opponent cells with concentric receptive fields. J. Neurophysiol. 41, 572–588 (1978)

    Google Scholar 

  21. M.S. Livingstone, D.H. Hubel, Anatomy and physiology of a color system in the primate visual cortex. J. Neurosci. 4, 309–356 (1984)

    Google Scholar 

  22. P. Lennie, J. Krauskopf, G. Sclar, Chromatic mechanisms in striate cortex of macaque. J. Neurosci. 10, 649–669 (1990)

    Google Scholar 

  23. B. Conway, Spatial structure of cone inputs to color cells in alert macaque primary visual cortex (V-1). J. Neurosci. 21, 2768–2783 (2001)

    Google Scholar 

  24. F. Ratliff, On the psychophysiological bases of universal color terms. Proc. Am. Philos. Soc. 120, 311–330 (1976)

    Google Scholar 

  25. S.L. Guth, Model for color vision and light adaptation. J. Opt. Soc. Am. A. 8, 976–993 (1981)

    Article  ADS  Google Scholar 

  26. E. Kaplan, B.B. Lee, R.M. Shapley, New views of primate retinal function. Prog. Retin. Res. 9, 273–336 (1990)

    Article  Google Scholar 

  27. R.L. De Valois, K.K. De Valois, A multi-stage color model. Vis. Res. 33, 1053–1065 (1993)

    Article  Google Scholar 

  28. K. Jameson, R.G. D’Andrade, It’s not really red, green, yellow, blue: an inquiry into perceptual color space, in Color categories in thought and language, ed. by C.L. Hardin, L. Maffi (University of Cambridge Press, Cambridge, 1997), pp. 295–319

    Chapter  Google Scholar 

  29. Gouras P. Color Vision, in Webvision, Organisation of Retina And Visual System, Kolb H, Fernandez E, Nelson R, eds, 1999; http://www.webvision.med.utah.edu.

  30. M.A. Webster, E. Miyahara, G. Malkoc, V.E. Raker, Variations in normal color vision. II. Unique hues. J. Opt. Soc. Am. 17, 1545–1555 (2000)

    Article  ADS  Google Scholar 

  31. A. Valberg, Unique hues: an old problem for a new generation. Vis Research 41, 1645–1657 (2001)

    Article  Google Scholar 

  32. B.R. Conway, M.S. Livingstone, A different point of hue. Proc. Natl. Acad. Sci. USA 102, 10761–10762 (2005)

    Article  ADS  Google Scholar 

  33. J. Krauskopf, D.R. Williams, D.W. Heeley, Cardinal directions of color space. Vis. Res. 22, 1123–1131 (1982)

    Article  Google Scholar 

  34. S.M. Wuerger, P. Atkinson, S. Cropper, The cone inputs to the unique-hue mechanisms. Vis. Res. 45, 3210–3223 (2005)

    Article  Google Scholar 

  35. Newton I. Opticks. London: Walford B and Walford S, printers to the Royal Society; 1704.

  36. Maxwell JC. Experiments on colour, as perceived by the eye, with remarks on colour blindness. Philos Trans R Soc Edinburgh 1854–1855;21(Part 2):275–298.

  37. M.E. Chevreul, De la loi du contraste simultane des couleurs (Pitois-Levraux, Paris, 1839)

    Google Scholar 

  38. G.A. Agoston, Color theory and application in art and design (Springer, London, 1987)

    Google Scholar 

  39. B. Berlin, P. Kay, Basic color terms: Their universality and evolution (University of California Press, Berkeley, 1969)

    Google Scholar 

  40. R.G. Kuehni, Variability in unique hue selection: a surprising phenomenon. Color. Res. Appl. 29, 158–162 (2004)

    Article  Google Scholar 

  41. R.W. Pridmore, Unique and binary hues as functions of luminance and illuminant color temperature, and relations with invariant hues. Vis. Res. 39, 3892–3908 (1999)

    Article  Google Scholar 

  42. E.H. Land, J.J. McCann, Lightness and retinex theory. J. Optical Soc. Am. 61, 1–11 (1971)

    Article  ADS  Google Scholar 

  43. O.D. Creutzfeldt, J.M. Crook, S. Kastner, C.Y. Li, X. Pei, The neurophysiological correlates of colour and brightness contrast in lateral geniculate neurons. I. Population analysis. Exp. Brain Res. 87, 3–21 (1991)

    Article  Google Scholar 

  44. S. Kastner, J.M. Crook, X. Pei, O.D. Creutzfeldt, Neurophysiological correlates of colour induction on white surfaces. Eur. J. Neurosci. 4, 1079–1086 (1992)

    Article  Google Scholar 

  45. R.L. De Valois, Color vision mechanisms in the monkey. J. Gen. Physiol. 43, 115–128 (1960)

    Article  Google Scholar 

  46. D.A. Baylor, B.J. Nunn, J.L. Schnapf, Spectral sensitivity of cones of the monkey Macaca fascicularis. J. Physiol. 390, 145–160 (1987)

    Google Scholar 

  47. R.L. De Valois, H.C. Morgan, M.C. Polson, W.R. Mead, E.M. Hull, Psychophysical studies of monkey vision. I. Macaque luminosity and color vision tests. Vision Res 14, 53–67 (1974)

    Article  Google Scholar 

  48. J.H. Sandell, C.G. Gross, M.H. Bornstein, Color categories in macaques. J. Comp. Physiol. Psychol. 93, 626–635 (1979)

    Article  Google Scholar 

  49. R.C. Reid, R.M. Shapley, Space and time maps of cone photoreceptor signals in macaque lateral geniculate nucleus. J. Neurosci. 22, 6158–6175 (2002)

    Google Scholar 

  50. E.N. Johnson, M.J. Hawken, R. Shapley, Cone inputs in macaque primary visual cortex. J. Neurophys. 91, 2501–2514 (2004)

    Article  Google Scholar 

  51. G.D. Horwitz, E.J. Chichilnisky, T.D. Albright, Cone inputs to simple and complex cells in V1 of awake macaque. J. Neurophys. 97, 3070–3081 (2007)

    Article  Google Scholar 

  52. S.G. Solomon, P. Lennie, Chromatic gain controls in visual cortical neurons. J. Neurosci. 25, 4779–4792 (2005)

    Article  Google Scholar 

  53. B. Conway, D. Hubel, M.S. Livingstone, Color contrast in macaque V1. Cereb. Cortex 12, 915–925 (2002)

    Article  Google Scholar 

  54. B.R. Conway, M.S. Livingstone, Spatial and temporal properties of cone signals in alert Macaque primary visual cortex. J. Neuroscience 26, 10826–10846 (2006)

    Article  Google Scholar 

  55. C. Tailby, S.G. Solomon, N.T. Dhruv, P. Lennie, Habituation reveals fundamental chromatic mechanisms in striate cortex of macaque. J. Neurosci. 28, 1131–1139 (2008)

    Article  Google Scholar 

  56. J.D. Victor, E.M. Blessing, J.D. Forte, P. Buzas, P.R. Martin, Response variability of marmoset parvocellular neurons. J. Physiol. 579, 29–51 (2007)

    Article  Google Scholar 

  57. P.A. Dufort, C.J. Lumsden, Color categorization and color constancy in a neural network model of V4. Biol. Cybern. 65, 293–303 (1991)

    Article  Google Scholar 

  58. K.R. Gegenfurtner, Cortical mechanisms of colour vision. Nat. Neurosci. 4, 563–572 (2003)

    Article  Google Scholar 

  59. R.W. Pridmore, Theory of corresponding colors as complementary sets. Color. Res. Appl. 30, 371–381 (2005)

    Article  Google Scholar 

  60. R.W. Pridmore, Color constancy from invariant wavelength ratios: I. The empirical spectral mechanism. Color. Res. Appl. 33, 238–249 (2008)

    Article  Google Scholar 

  61. R.W. Pridmore, Complementary colors: the structure of wavelength discrimination, uniform hue, spectral sensitivity, saturation, chromatic induction and adaptation. Color. Res. Appl. 34, 233–252 (2009)

    Article  Google Scholar 

  62. M. Pottek, K. Schultz, R. Weiler, Effects of nitric oxide on the horizontal cell network and dopamine release in the carp retina. Vis. Res. 37, 1091–1102 (1997)

    Article  Google Scholar 

  63. G. Twig, H. Levy, I. Perlman, Color opponency in horizontal cells of the vertebrate retina. Prog. Retin. Eye Res. 22, 31–68 (2003). Review article

    Article  Google Scholar 

  64. K.R. Gegenfurtner, J. Rieger, Sensory and cognitive contributions of color to the recognition of natural scenes. Curr. Biol. 10, 805–808 (2000)

    Article  Google Scholar 

  65. F.A. Wichmann, L.T. Sharpe, K.R. Gegenfurtner, The contributions of color to recognition memory for natural scenes. J. Exp. Pyschol. Learn. Mem. Cognit. 28, 509–520 (2002)

    Article  Google Scholar 

  66. M.H. Brill, G. West, Contributions to the theory of invariance of color under the condition of varying illumination. J. Math. Biol. 11, 337–350 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  67. L.T. Maloney, B. Wandell, Color constancy: a method for recovering surface spectral reflectance. J. Opt. Soc. Am. A. 3, 29–33 (1986)

    Article  ADS  Google Scholar 

  68. M.H. Brill, Color constancy and color rendering: concomitant engineering of illuminants and reflectances. Color. Res. Appl. 13, 174–180 (1988)

    Article  Google Scholar 

  69. G.D. Finlayson, M.S. Drew, B.V. Funt, Color constancy: generalized diagonal transforms suffice. J. Opt. Soc. Am. A. 11, 3011–3020 (1994)

    Article  ADS  Google Scholar 

  70. Kries J von, Chromatic adaptation. (Festschrift der Albrecht-Ludwig Universtat, 1902)

  71. S.M. Courtney, L.H. Finkel, G. Buchsbaum, Network simulations of retinal and cortical contributions to color constancy. Vis. Res. 35, 413–434 (1994)

    Article  Google Scholar 

  72. D.H. Foster, S.M.C. Nascimento, Relational color constancy from invariant cone-excitation ratios. Proc. R. Soc. Lond. B. Biol. Sci. 257, 115–121 (1994)

    Article  ADS  Google Scholar 

  73. D.H. Hubel, Eye, Brain and Vision, 2nd edn. (Scientific American Library, New York, 1995)

    Google Scholar 

  74. K. Moutoussis, S. Zeki, Responses of spectrally selective cells in macaque area V2 to wavelengths and colors. J. Neurophys. 87, 2104–2112 (2002)

    Google Scholar 

  75. T. Wachtler, T.J. Sejnowski, T.D. Albright, Representation of color stimuli in awake macaque primary visual cortex. Neuron 37, 681–691 (2003)

    Article  Google Scholar 

  76. Buchsbaum G, Tailor DR. The elementary structure of natural color images and its possible neurophysiological correlates [Abstract]. Journal of Vision 1(3) (2001): doi:10.1167/1.3.64

  77. J. Larimer, D.H. Krantz, C.M. Cicerone, Opponent-process additivity. I. Red/green equilibria. Vis. Res. 14, 1127–1140 (1974)

    Article  Google Scholar 

  78. J. Larimer, D.H. Krantz, C.M. Cicerone, Opponent-process additivity. II. Yellow/blue equilibria. Vis. Res. 18, 723–731 (1975)

    Article  Google Scholar 

  79. R.W. Pridmore, Complementary colors theory of color vision: physiology, color mixture, color constancy, and color perception. Color. Res. Appl. 36, 394–412 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

I thank Dr. Bevil Conway, Wellesley College, Massachusetts, USA, for advice on many physiological aspects of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralph W. Pridmore.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pridmore, R.W. Single cell spectrally opposed responses: opponent colours or complementary colours?. J Opt 42, 8–18 (2013). https://doi.org/10.1007/s12596-012-0090-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12596-012-0090-0

Keywords

Navigation