Skip to main content
Log in

Understanding the transition levels of photoluminescence of ZnO quantum dots under weak confinement

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

A simple one dimensional potential well model has been employed to understand the photoluminescence from ZnO QDs. The radius of the QDs being much larger than the Bohr radius, weak confinement effect was observed. UV-visible spectrum was used to calculate the band gap of the QDs. The value of the band gap also suggests that the confinement effect is very weak. We designated various energy levels corresponding to different emission peaks with different quantum numbers n. This study will help in understanding the photoluminescence from ZnO nanostructures in a different way.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Y. Gu, I.L. Kuskovsky, M. Yin, S. O’Brien, G.F. Neumark, Quantum confinement in ZnO nanorods. Appl. Phys. Lett. 85(17), 3833(1)–3833(3) (2004)

    ADS  Google Scholar 

  2. Y. Wang, A. Suna, M. Mahler, R. Kasowski, PbS in polymers: From molecules to bulk solids. J. Chem. Phys 87, 7315–7322 (1987)

    Article  ADS  Google Scholar 

  3. M. Gao, S. Richter, S. Kirstein, H. Mohwald, Electroluminescence studies on self-assembled films of PPV and CdSe nanoparticles. J. Phys. Chem. B. 102, 4096–4103 (1998)

    Article  Google Scholar 

  4. G. Pellegrini, G. Mattei, P. Mazzoldi, Finite depth square well model: applicability and limitations. J. Appl. Phys. 97, 073706(1)–073706(8) (2005)

    Article  ADS  Google Scholar 

  5. G.K. Williamson, W.H. Hall, X-ray line broadening from filed aluminium and wolfram L'elargissement des raies de rayons x obtenues des limailles d'aluminium et de tungsteneDie verbreiterung der roentgeninterferenzlinien von aluminium- und wolframspaenen. Acta. Metall. 1, 22–31 (1953)

    Article  Google Scholar 

  6. L. Mädler, W.J. Stark, S.E. Pratsinisa, Rapid synthesis of stable ZnO quantum dots. J. Appl. Phys. 92, 6537(1)–6537(4) (2002)

    Article  Google Scholar 

  7. L. Madler, H.K. Kammler, R. Mueller, S.E. Pratsinis, Controlled synthesis of nanostructured particles by flame spray pyrolysis. J. Aerosol Sci. 33(2), 369–389 (2002)

    Article  Google Scholar 

  8. B. Vinitha, K. Manzoor, R.S. Ajimsha, P.M. Aneesh, M.K. Jayaraj, Synthesis of highly luminescent, bio-compatible ZnO quantum dots doped with Na. Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry 38, 126–131 (2008)

    Google Scholar 

  9. D.H. Zhang, Q.P. Wang, Z.Y. Xue, Photoluminescence of ZnO films excited with light of different wavelength. Appl. Surf. Sci. 207, 20–25 (2003)

    Article  ADS  Google Scholar 

  10. X. Zhou, S. Gu, Z. Wu, S. Zhu, J. Ye, S. Liu, R. Zhang, Y. Shi, Y. Zheng, Photoluminescence study of ZnO nano-islands. Appl. Surf. Sci. 253, 2226–2229 (2006)

    Article  ADS  Google Scholar 

  11. P.K. Samanta, S.K. Patra, P.R. Chaudhuri, Violet emission from flower-like bundle of ZnO nanosheets. Physica E 41, 664–667 (2009)

    Article  ADS  Google Scholar 

  12. P.K. Samanta, P.R. Chaudhuri, Growth and optical properties of chemically grown ZnO nanobelts. Sci. Adv. Mater. 3, 107–112 (2011)

    Article  Google Scholar 

  13. L. Irimpan, V.P.N. Nampoori, P. Radhakrishnan, Visible luminescence mechanism in nano ZnO under weak confinement regime. J. Appl. Phys. 104, 113112(1)–113112(5) (2008)

    ADS  Google Scholar 

  14. M. Rieth, W. Schommers, S. Baskoutas, Novel numerical method for the solution of Schrödinger’s equation: I. A particle in an interaction potential of general shape. Int. J. Mod. Phys. B. 16, 4081–4092 (2002)

    Article  ADS  MATH  Google Scholar 

  15. S. Baskoutas, A.F. Terzis, Size-dependent band gap of colloidal quantum dots. J. Appl. Phys 99, 013708(1)–013708(3) (2006)

    Article  ADS  Google Scholar 

  16. S. Baskoutas, A.F. Terzis, Size dependent exciton energy of various technologically important colloidal quantum dots. Mat. Sci. Eng. B. 147, 280–283 (2008)

    Article  Google Scholar 

  17. M. Haase, H. Weller, A. Henglein, Photochemistry and radiation chemistry of colloidal semiconductors. 23. Electron storage on zinc oxide particles and size quantization. J. Phys. Chem 92, 482–487 (1988)

    Article  Google Scholar 

  18. N. Bouropoulos, I. Tsiaoussis, P. Poulopoulos, P. Roditis, S. Baskoutas, ZnO controllable sized quantum dots produced by polyol method: an experimental and theoretical study. Mat. Lett. 62, 3533–3535 (2008)

    Article  Google Scholar 

  19. J.I. Pankove, Optical processes in semiconductors (Prentice-Hall, Englewood Cliffs, NJ, 1971)

    Google Scholar 

  20. B. Lin, Z. Fu, Y. Jia, Green luminescent center in undoped zinc oxide films deposited on silicon substrates. Appl. Phys. Lett. 79, 943(1)–943(3) (2001)

    ADS  Google Scholar 

  21. P.S. Xu, Y.M. Sun, C.S. Shi, F.Q. Xu, H.B. Pan, The electronic structure and spectral properties of ZnO and its defects. Nucl. Instrum. Methods Phys. Res. B. 199, 286–290 (2003)

    Article  ADS  Google Scholar 

  22. F. Oba, A. Togo, I. Tanaka, J. Paier, G. Kresse, Defect energetics in ZnO: a hybrid Hartree-Fock density functional study. Phys. Rev. B 77, 245202(1)–245202(6) (2008)

    Article  ADS  Google Scholar 

  23. P.K. Samanta, S.K. Patra, P.R. Chaudhuri, Visible Emission from ZnO Nanorods Synthesized by a Simple Wet Chemical Method. International J Nanosci. Nanotech. 1, 81–90 (2009)

    Google Scholar 

  24. P.K. Samanta, P.R. Chaudhuri, Substrate effect on morphology and photoluminescence from ZnO monopods and bipods. Front. Optoelectron. China. 4, 130–136 (2011)

    Article  Google Scholar 

  25. P.K. Samanta, S. Basak, P.R. Chaudhuri, Synthesis and characterization of chemically grown ultra long ZnO nanotubes. Int. J. Nanosci. 10, 69–73 (2011)

    Article  Google Scholar 

  26. P.K. Samanta, P.R. Chaudhuri, Weak quantum confinement in ZnO Nanorods: a one dimensional potential well approach. Opt. Photonics Letters. 4, 35–45 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

We sincerely thank Mr. S. Basak (TU Delft) for his help in this work. The authors also sincerely acknowledge Ghatal Rabindra Satabarsiki Mahavidyalaya for providing financial support to carry out this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pijus Kanti Samanta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Samanta, P.K., Chaudhuri, P.R. Understanding the transition levels of photoluminescence of ZnO quantum dots under weak confinement. J Opt 41, 75–80 (2012). https://doi.org/10.1007/s12596-012-0065-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12596-012-0065-1

Keywords

Navigation