Skip to main content
Log in

Changes in Aminotransferase Activity Associated with Short Term Starvation in Channa punctatus

  • Short Communication
  • Published:
Proceedings of the Zoological Society Aims and scope Submit manuscript

Abstract

The current investigation focus to analyse the effects of starvation on activities of Alanine amino transferase (ALT) and protein contents in Channa punctatus after 3, 6, 9, 12 and 15 days of starvation respectively. The results indicated that, there was significant increase in alanine transferase (ALT) activities from 3rd day of starvation in blood and liver whereas in muscle it was observed on 15th day of starvation. In case of aspartate aminotransferase (AST), significant increase in activities was observed from 3rd day in blood, 6th day in liver and 12th day in muscle to that of control. However, in comparison to control, the protein contents of liver in the starved groups declined by 1.01, 1.06, 1.10, 1.13 and 1.17 folds after 3, 6, 9, 12 and 15 days of starvation periods respectively. The results specifies drastic changes in ALT, AST activities and protein contents in C. punctatus during short term starvation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Data Availability

The data obtained during this study is not available for public. With resonable request could be obtained from the corresponding author.

References

  • Bloch, M. E. 1793. Naturgeschichte der auslÓ“ndischen Fische. Berlin. Naturgeschichte der AuslÓ“ndischen Fische. 325–360.

  • Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72: 248–254. https://doi.org/10.1006/abio.1976.9999.

    Article  CAS  PubMed  Google Scholar 

  • Caruso, G., M. Gabriella, R. Caruso, L. Genovese, F. Mancari, and G. Maricchiolr. 2012. Short fasting and refeeding in red porgy (Pagrus pagrus, Linnaeus, 1759): Response of some haematological, biochemical and non-specific immune parameters. Marine Environment Research 81: 18–25. https://doi.org/10.1016/j.marenvres.2012.07.003.

    Article  CAS  Google Scholar 

  • Cowey, C.B., D. Knox, M.J. Walton, and J.W. Adron. 1977. The regulation of gluconeogenesis by diet and insulin in rainbow trout (Salmo gairdneri). British Journal of Nutrition 38 (3): 463–470. https://doi.org/10.1079/BJN19770111.

    Article  CAS  PubMed  Google Scholar 

  • Dar Shafi, Z., S.B. Dongre, and S.S. Pawar. 2022. Effect of starvation and refeeding on protein level muscle, liver, kidney, and Gills of freshwater fish Channa punctatus. Species 23 (71): 9–13.

    Google Scholar 

  • FAO. 2001. Production, accessibility, marketing and consumption pattern of Fresh Water Aquaculture Products in Asia. A Cross Country Comparison.

  • Harmon, K.J., M.T. Bolinger, and K.J. Rodnick. 2011. Carbohydrate energy reserves and effect of food deprivation in male and female rainbow trout. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 158 (4): 423–431. https://doi.org/10.1016/j.cbpa.2010.11.017.

    Article  CAS  Google Scholar 

  • Hidalgo, M.C., A.E. Morales, M. Arizcun, E. Abellan, and G. Cardenele. 2017. Regional asymmetry of metabolic and antioxidant profile in the sciaenid fish shi drum (Umbrina cirrosa). Redox Biology 11: 682–687. https://doi.org/10.1016/J.REDOX.2017.01.022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jafari, N., B. Falahat Kar, and M.M. Sajjadi. 2019. The effect of feeding strategies and body weight on growth performance and hematological parameters of siberian sturgeon (Acipenser baerii, Brandt 1869): Preliminary results. Journal of Applied Ichthyology 35 (1): 289–295. https://doi.org/10.1111/jai.13824.

    Article  Google Scholar 

  • Jayaram, K.C. 1999. The freshwater fishes of the Indian region, 1st ed., 446. Delhi: Narendra Publishing House.

    Google Scholar 

  • Kim, W.R., S.L. Flamm, A.M. Di Bisceglie, and H.C. Bodenheimer. 2008. Serum activity of alanine aminotransferase (ALT) as an indicator of health and disease. Hepatology 47 (4): 1363–1370. https://doi.org/10.1002/hep.22109.

    Article  CAS  PubMed  Google Scholar 

  • Liu, B., H.-Y. Guo, B.-S. Liu, N. Zhang, J.-W. Yang, L. Guo, S.-G. Jiang, and D.-C. Zhang. 2022. Starvation refeeding influence the growth, biochemical index, intestinal microbiota and transcriptomic profiles of golden pompano Trachinoyus ovatus (Linnaeus 1758). Frontiers in Marine Science 9: 1–15. https://doi.org/10.3389/fmars.2022.998190.

    Article  Google Scholar 

  • M.A.S. Marie. 1994. Toxic effects of aluminium on blood parameters and liver function of the Nile catfish, Clarius lazera. Journal of the Egyptian-German Society of Zoology 13: 279–294

    Google Scholar 

  • Najafi, A., A.P. Salati, V. Yavari, and F. Asadi. 2014. Effects of short term starvation and reefeding on antioxidant defense status in mesopotamichthys sharpeyi (Gunther, 1874) fingerlings. International Journal of Aquatic Biology 2 (5): 246–252.

    Google Scholar 

  • Navarro, I., J. Gutierrez. 1995. Fasting and starvation In Biochemistry and molecular biology of fishes. Metabolic Biochemistry 4: 393–434. https://doi.org/10.1016/s1873-0140(06)80020-2.

    Article  CAS  Google Scholar 

  • Park, I., J. Hur, and J. Choi. 2012. Hematological responses, survival and respiratory exchange in the Olive Flounder, Paralichthys olivaceus during starvation. Asian-Australasian Journal of Animal Sciences 25 (9): 1276–1284. https://doi.org/10.5713/ajas.2012.12128.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakyi, M.E., J. Cai, J. Tang, E.D. Abarike, L. Xia, P. Li, F.K.A. Kuebutornye, Z. Zou, Z. Liang, and J. Jian. 2020. Effects of starvation and subsequent re-feeding on intestinal microbiota and metabolic responses in Nile tilapia, Oreochromie niloticus. Aquaculture Reports 17: 100370. https://doi.org/10.1016/j.aqrep.2020.100370.

    Article  Google Scholar 

  • Samanta, P., S. Pal, A.K. Mukherjee, and A.R. Ghosh. 2014. Evaluation of metabolic enzymes in response to excel Mera 71, a glyphosate- based herbicide and recovery pattern in freshwater teleostean fishes. Biomed Research International. https://doi.org/10.1155/2014/425159.

    Article  PubMed  PubMed Central  Google Scholar 

  • Shahsavani, D., M. Mohri, and H. Gholipour Kanani. 2010. Determination of normal values of some blood serum enzymes in Acipen serstellatus Pallas. Fish Physiology and Biochemistry 36: 39–43. https://doi.org/10.1007/s10695-008-9277-3.

    Article  CAS  PubMed  Google Scholar 

  • Smith, M.A.K. 1981. Estimation of growth potential by measurement of tissue protein synthetic rates in feeding and fasting rainbow trout, Salmo gairdnerii Richardson. Journal of Fish Biology 19 (2): 213–220. https://doi.org/10.1111/j.1095-8649.1981.tb05825.x.

    Article  CAS  Google Scholar 

  • Toney, M.D. 2005. Reaction specificity in pyridoxal phosphate enzymes. Archives of Biochemistry and Biophysics 433 (1): 279–287. https://doi.org/10.1016/j.abb.2004.09.037.

    Article  CAS  PubMed  Google Scholar 

  • Wang, J., J. Du, B. Jiang, R. He, A. Li. 2019. Effects of short- term fasting on the resistance of Nile tilapia (Oreochromis niloticus) to Streptococcus agalactiae infection. Fish and Shellfish Immunology 94: 889–895. https://doi.org/10.1016/j.fsi.2019.09.055

    Article  CAS  PubMed  Google Scholar 

  • Wood, N.Y.S., and A.C.Y. Fung. 1981. Studies on the biology of the red sea bream. IV. Metabolic effects of starvation at low temperature. Comparative Biochemistry and Physiology Part A: Physiology 69 (3): 461–465. https://doi.org/10.1016/0300-9629(81)93005-X.

    Article  Google Scholar 

  • Xia, J.H., G. Lin, G.H. Fu, Z.Y. Wan, M. Lee, L. Wang, X.J. Liu, and G.H. Yue. 2014. The intestinal microbiome of fish under starvation. BMC Genome 15: 1–11. https://doi.org/10.1186/1471-2164-15-266.

    Article  Google Scholar 

  • Yarmohammadi, M., M. Pourkazemi, R. Kazemi, M. Pourdehghani, M. Hassanzadeh Saber, and L. Azizzadeh. 2015. Effect of starvation and refeeding on some hematological and plasma biochemical parameters of juvinile persian sturgeon, Acipenser Persicus Borodin, 1897. Caspian Journal of Environmental Sciences 13: 129–140.

    Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Principal and Head of the Department, Zoology, B. Borooah College for giving the permission to carry out the work.

Funding

No funding received.

Author information

Authors and Affiliations

Authors

Contributions

The article ‘Changes in aminotransferase activity associated with short term starvation in Channa punctatus’ was conceptualized by AB. Formal analysis and investigation was done by SM, Supervised by AB, Writing and statistics done by SM and NA, review and editing done by AB.

Corresponding author

Correspondence to Archana Borah.

Ethics declarations

Conflict of interest

There is no conflict of interest among the authors.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehjebin, S., Borah, A. & Ali, N. Changes in Aminotransferase Activity Associated with Short Term Starvation in Channa punctatus. Proc Zool Soc 76, 453–458 (2023). https://doi.org/10.1007/s12595-023-00504-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12595-023-00504-2

Keywords

Navigation