Skip to main content
Log in

Identification and Determination of Epidermal Fatty Acids Extracted in Walterinnesia morgani (Elapidae) Using GC/FID

  • Research Article
  • Published:
Proceedings of the Zoological Society Aims and scope Submit manuscript

Abstract

Walterinnesia morgani is one of the venomous snakes that localized in Khuzestan Province in southwestern of Iran, The epidermis of snakes is made of six epidermal layers termed oberhautchen, β, mesos α, lacunar, and clear, and have been shown to function as the main barrier to evaporative water loss and essential for life on dry land. Regarding the temperature of Khuzestan province and its high temperature, identification of fatty acids in W. morgani skin can help us to identify the adaptability of this species to temperature conditions. The present study skin lipids were analyzed by GC/FID and fatty acids identified in skin include: Octadecanoic acid, Linoleic acid, Tricosanoic acid, Cis-9-Oleic acid, Nervonic acid, Heptadecanoic acid, Palmitic acid and Cis-11-eicosenoic acid. The presence of these fatty acids in the W. morgani skin is effective in survival and tolerance in tropical weather conditions in Khuzestan province.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abraham, W., P.W. Wertz, R. Burken, and D.T. Downing. 1987. Glucosylsterol and acylglucosylsterol of snake epidermis: structure determination. Journal of Lipid Research 28: 446–449.

    CAS  PubMed  Google Scholar 

  • Agugliaro, J., and H.K. Reinert. 2005. Comparative skin permeability of neonatal and adult timber rattlesnakes (Crotalus horridus). Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 141: 70–75.

    Article  Google Scholar 

  • Aubret, F., and R. Shine. 2010. Thermal plasticity in young snakes: how will climate change affect the thermoregulatory tactics of ectotherms? Journal of Experimental Biology 213: 242–248. https://doi.org/10.1242/jeb.035931.

    Article  CAS  PubMed  Google Scholar 

  • Azir, M., S. Abbasiliasi, T. Azmi, T. Ibrahim, Y. Noorzianna, A. Manaf, A.Q. Sazili, and Sh Mustafa. 2017. Detection of lard in cocoa butter—its fatty acid composition, triacylglycerol profiles, and thermal characteristics. Foods 6(8): 6666. https://doi.org/10.3390/foods6110098.

    Article  CAS  Google Scholar 

  • Cardoso, C.R., Favoreto Jr., S.J. Vancim, G.B. Barban, D.B. Ferraz, and J.S. Silva. 2011. Oleic acid modulation of the immune response in wound healing: a new approach for skin repair. Immunobiology 216: 409–415.

    Article  CAS  PubMed  Google Scholar 

  • Jackson, M.K., and M. Sharawy. 1978. Lipids and cholesterol clefts in the lacunar cells of snake skin. Anatomical Record 190: 41–46.

    Article  CAS  PubMed  Google Scholar 

  • Kangania, C.O., D.E. Kelleyb, and J.P. DeLanya. 2008. New method for GC/FID and GC-C-IRMS analysis of plasma free fatty acid concentration and isotopic enrichment. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences 15(873(1)): 95–101. https://doi.org/10.1016/j.jchromb.2008.08.009.

    Article  CAS  Google Scholar 

  • Klein, M.C., and S.N. Gorb. 2012. Epidermis architecture and material properties of the skin of four snake species. Journal of the Royal Society, Interface 9: 3140–3155.

    Article  PubMed  PubMed Central  Google Scholar 

  • Landmann, L. 1986. The skin of reptiles epidermis and dermis. In Biology of the integument. 2 Vertebrates, ed. J. Bereiter-Hahn, G. Matoltsy, and K.S. Richards, 150–187. Berlin: Springer.

    Chapter  Google Scholar 

  • Lillywhite, H.B. 2006. Water relations of tetrapod integument. The Journal of Experimental Biology 209: 202–226. https://doi.org/10.1242/jeb.02007.

    Article  PubMed  Google Scholar 

  • Lillywhite, H.B., H. Heatwole, and C.M. Sheehy. 2015. Dehydration and drinking behavior in true sea snakes (Elapidae: Hydrophiinae: Hydrophiini). Journal of Zoology 296(4): 261–269. https://doi.org/10.1111/jzo.12239.

    Article  Google Scholar 

  • Moradi, N., S. Shafiei, and M.E. Sehhatisabet. 2013. The snake fauna of Khabr national park, southeast of Iran. Iranian Journal of Animal Biosystematics 9 (1): 41–55. https://doi.org/10.22067/ijab.v9i1.33305.

    Article  Google Scholar 

  • Rastegar-Pouyani, N., HGh Kami, M. Rajabzadeh, S. Shafiei, and S.C. Anderson. 2008. Annotated checklist of amphibians and reptiles of Iran. Iranian Journal of Animal Biosystematics 4(1): 43–66.

    Google Scholar 

  • Ripamonti, A., A. Alibardi, S. Fermani, M. Gazzano, and G. Falini. 2009. Keratin-lipid structural organization in the corneous layer of snake. Biopolymer 91: 1172–1181. https://doi.org/10.1002/bip.21184.

    Article  CAS  Google Scholar 

  • Roberts, J.B., and H.B. Lillywhite. 1983. Lipids and the permeability of epidermis from snakes. Journal of Experimental Zoology 228: 1–9. https://doi.org/10.1002/jez.1402280102.

    Article  Google Scholar 

  • Torri, C., A. Mangoni, R. Teta, E. Fattorusso, L. Alibardi, S. Fermani, I. Bonacini, et al. 2014. Skin lipid structure controls water permeability in snake molts. Journal of Structural Biology 185: 99–106. https://doi.org/10.1016/j.jsb.2013.10.007.

    Article  CAS  PubMed  Google Scholar 

  • Tu, M.C., H.B. Lillywhite, J.G. Menon, and G.K. Menon. 2002. Postnatal ecdysis establishes the permeability barrier in snake skin: new insights into lipid barrier structures. Journal of Experimental Biology 205: 3019–3030.

    CAS  PubMed  Google Scholar 

  • Wertz, P.W., P.M. Stover, and D.T. Downing. 1986. A survey of polar and nonpolar lipids from epidermis and epidermal appendages of the chicken (Gallus domesticus). Comparative Biochemistry and Physiology B 84 (2): 203–206. https://doi.org/10.1016/0305-0491(86)90206-3.

    Article  CAS  Google Scholar 

  • Zhang, H., Z. Wang, and O. Liu. 2015. Development and validation of a GC–FID method for quantitative analysis of oleic acid and related fatty acids. Journal of Pharmaceutical Analysis 5: 223–230.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

We are thankful to Central Laboratory of Urmia University for providing infrastructural facilities for GC/FID and Razi vaccine and serum research institute, Ahvaz, Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hedieh Jafari.

Ethics declarations

Conflict of interest

The authors declare no competing or financial interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jafari, H., Frhangpazhouh, F., Kharazi, P. et al. Identification and Determination of Epidermal Fatty Acids Extracted in Walterinnesia morgani (Elapidae) Using GC/FID. Proc Zool Soc 73, 418–421 (2020). https://doi.org/10.1007/s12595-020-00347-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12595-020-00347-1

Keywords

Navigation