Isolation and Characterization of Bacteria from the Intestine of Clarias batrachus for Probiotic Organism

Abstract

Clarias batrachus (Linn.) in India is at a deteriorating state. The use of probiotic organism is one of the alternatives to promote fish nutrition in worldwide aquaculture. An extensive study was performed to isolate and identify probiotic bacteria from the gut of the C. batrachus. Quantitative and qualitative analysis of bacterial flora associated with the intestine of C. batrachus were carried out. Total viable bacterial count in the intestine of catfish was 1.61 × 1010cfu/g. Thirty-two different bacterial isolates were selected from the intestinal microflora of C. batrachus. Gram-positive rod-shaped bacteria dominated (81%) the populations in catfish. The five intestinal isolates (PKA1, PKA2, PKA17, PKA18 and PKA19) showed antagonistic properties against common fish pathogens - Vibrio harveyi, Vibrio vulnificus and Vibrio parahaemolyticus. The strain PKA17, PKA18 and PKA19 were identified as Lysinibacillus sphaericus, Bacillus cereus and Bacillus thuringiensis respectively by the 16S rDNA sequencing.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Aarestrup, F.M. 1999. Association between the consumption of antimicrobial agents in animal husbandry and the occurrence of resistant bacteria among food animals. International Journal of Antimicrobial Agents 12: 279–285.

    CAS  Article  Google Scholar 

  2. Ahmed, R., R.B. Pandey, S.H. Arif, N. Nabi, M. Jabeen, and A. Hasnain. 2012. Polymorphic β and γ lens crystalline demonstrate latitudinal distribution of threatened walking catfish Clarias batrachus (Linn.) populations in north-western India. Journal of Biological Sciences 12: 98–104.

    Article  Google Scholar 

  3. Al-Harbi, A.H., and M.N. Uddin. 2010. Bacterial populations of African Catfish, Clarias gariepinus (Burchell 1822) cultured in earthen ponds. Journal of Applied Aquaculture 22: 187–193. https://doi.org/10.1080/10454438.2010.497736.

    Article  Google Scholar 

  4. Argungu, L.A., A. Christianus, S.M.N. Amin, S.K. Daud, S.S. Siraj, and M. Aminur Rahman. 2013. Asian catfish Clarias batrachus (Linnaeus, 1758) getting critically endangered. Asian Journal of Animal and Veterinary Advances 8: 168–176.

    Article  Google Scholar 

  5. Ayoola, S.O., E.K. Ajani, and O.F. Fashae. 2013. Effect of probiotics (Lactobacillus and Bifidobacterium) on growth performance and hematological profile of Clarias gariepinus juveniles. World Journal of Fish and Marine Sciences 5: 01–08.

    Google Scholar 

  6. Azam, F., T. Fenchel, J.G. Field, J.S. Gray, L.A. Meyerr-Reil, and F. Thingstad. 1983. The ecological role of water column microbes in the sea. Marine Ecology Progress Series 10: 257–263.

    Article  Google Scholar 

  7. Bandyopadhyay, P., and P.K. Das Mohapatra. 2009. Effect of probiotic bacterium Bacillus circulans PB7 in the formulated diets: on growth, nutritional quality and immunity of Catla catla (Ham.). Fish Physiology and Biochemistry 35: 467–478.

    CAS  Article  Google Scholar 

  8. Barman, P., A. Banerjee, P. Bandyopadhyay, K.C. Mondal, and P.K. Das Mohapatra. 2011. Isolation, identification and molecular characterization of potential probiotic bacterium, Bacillus subtilis PPP 13 from Penaeus monodon. Biotechnology, Bioinformatics and Bioengineering 1(4): 473–482.

    Google Scholar 

  9. Chythanya, R., I. Karunasagar, and I. Karunasagar. 2002. Inhibition of shrimp pathogenic Vibrios by a marine Pseudomonas I-2 strain. Aquaculture 208: 1–10.

    Article  Google Scholar 

  10. Dahiya, T., S.K. Gahlawat, and R.C. Sihag. 2012. Elimination of pathogenic bacterium (Micrococcus sp.) by the use of probiotics. Turkish Journal of Fisheries and Aquatic Sciences 12: 185–187.

    Article  Google Scholar 

  11. Ganguly, A., A. Mandal, M.A. Khan, T.K. Dutta, S. Raha, and P.K. Das Mohapatra. 2017. Study of physico-chemical parameters, planktonic diversity and bacterial load of Clarias batrachus cultivation pond at Bankura, WB, India. International Research Journal of Biological Sciences 6(12): 23–34.

    Google Scholar 

  12. Gatesoupe, F.J. 1999. The use of probiotics in aquaculture. Aquaculture 180: 147–165.

    Article  Google Scholar 

  13. Ghosh, S., A. Sinha, and C. Sahu. 2007. Isolation of putative probionts from the intestines of Indian major carps. The Israeli Journal of Aquaculture Bamidgeh 59: 127–132.

    Google Scholar 

  14. Gram, L., J. Melchiorsen, B. Spanggaard, I. Huber, and T. Nielsen. 2004. Inhibition of Vibrio anguillarum by Pseudomonas fluorescens AH2, a possible probiotic treatment of fish. Applied and Environmental Microbiology 65: 969–973.

    Google Scholar 

  15. Hai, N.V., R. Fotedar, and N. Buller. 2007. Selection of probiotics by various inhibition test methods for use in the culture of western king prawns, Penaeus latisulcatus (Kishinouye). Aquaculture 272: 231–239.

    Article  Google Scholar 

  16. Hamid, T.H.T.A., A.J. Khan, M.F. Jalil, and N.S. Azhar. 2012. Isolation and screening of lactic acid bacteria, Lactococcus lactis from Clarias gariepinus (African catfish) with potential use as probiotic in aquaculture. African Journal of Biotechnology 11: 7494–7499.

    Article  Google Scholar 

  17. Huson, D.H., D.C. Richter, C. Rausch, T. Dezulian, M. Franz, and R. Rupp. 2007. Dendroscope: An interactive viewer for large phylogenetic trees. BMC Bioinformatics 8: 460–464.

    Article  Google Scholar 

  18. Irianto, A., and B. Austin. 2002. Use of probiotics to control furunculosis in rainbow trout, Oncorhynchus mykiss (Walbaum). Journal of Fish Diseases 25: 333–342.

    CAS  Article  Google Scholar 

  19. Krasowska, A., and K. Sigler. 2014. How microorganisms use hydrophobicity and what does this mean for human needs? Frontiers in Cellular and Infection Microbiology 4: 1–7.

    Article  Google Scholar 

  20. Kumar, Y., B. Chisti, A.K. Singh, H. Masih, and S.K. Mishra. 2013. Isolation and characterization of Lactobacillus species from fish intestine for probiotic properties. International Journal of Pharma and Bio Sciences 4: 11–21.

    Google Scholar 

  21. Larkin, M.A., G. Blackshields, N.P. Brown, R. Chenna, P.A. McGettigan, H.M. William, F. Valentin, I.M. Wallace, A. Wilm, R. Lopez, J.D. Thompson, T.J. Gibson, and D.G. Higgins. 2007. Clustal wand clustal X version 2.0. Bioinformatics 23: 2947–2948.

    CAS  Article  Google Scholar 

  22. Mehmet, T., G. Göksen, B.E. Simel, A.I. Nurdan, Ö. Filiz. 2015. In Vitro properties of potential probiotic indigenous lactic acid bacteria originating from traditional pickles. BioMed Research International 1–8. https://doi.org/10.1155/2015/315819.

    Article  Google Scholar 

  23. Muylaert, K., K. Van der Gucht, and N. Vloemans. 2002. Relationship between bacterial community composition and bottom-up versus top-down variables in four eutrophic shallow lakes. Applied and Environmental Microbiology 68: 4740–4750.

    CAS  Article  Google Scholar 

  24. Nayak, S.K., and S.C. Mukherjee. 2011. Screening of gastrointestinal bacteria of Indian major carps for a candidate probiotic species for aquaculture practices. Aquaculture Research 42: 1034–1041.

    Article  Google Scholar 

  25. O’hara, C.M., F.W. Brenner, and J.M. Miller. 2000. Classification, identification, and clinical significance of Proteus, Providencia, and Morganella. Clinical Microbiology Reviews 13(4): 534–546.

    Article  Google Scholar 

  26. Ouwehand, A.C., P.V. Kirjavainen, M.M. Grönlund, E. Isolauri, and S.J. Salminen. 1999. Adhesion of probiotic micro-organisms to intestinal mucus. International Dairy Journal 9: 623–630.

    Article  Google Scholar 

  27. Savage, D.C. 1992. Growth phase cellular hydrophobicity and adhesion in vitro of Lactobacilli colonizing the keratinizing gastric epithelium in the mouse. Applied and Environmental Microbiology 58(6): 1992–1995.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Sissons, J.W. 1989. Potential of probiotic organisms to prevent diarrhoea and promote digestion in farm animals–a review. Journal of the Science of Food and Agriculture 49: 1–13.

    Article  Google Scholar 

  29. Talwar, P.K., and A.G. Jhingran. 1991. Inland fishes of India and adjacent countries, vol. 1, 541. New Delhi: Oxford and IBH Publishing Co. Pvt. Ltd.

    Google Scholar 

  30. Tuimala, J. 1989. A primer to phylogenetic analysis using PHYLIP package. Cladistics 5: 164–166.

    Google Scholar 

  31. Uddin, N., and A.H. Al-Harbi. 2012. Bacterial flora of polycultured common carp (Cyprinus carpio) and African catfish (Clarias gariepinus). International Aquatic Research 4: 10.

    Article  Google Scholar 

  32. Verschuere, L., G. Rombaut, P. Sorgeloos, and W. Verstraete. 2000. Probiotic bacteria as biological control agents in aquaculture. Microbiology and Molecular Biology Reviews 64: 655–671.

    CAS  Article  Google Scholar 

  33. Vignolo, G.M., F. Suriani, A.P.R. Holdago, and G. Oliver. 1993. Antibacterial activity of Lactobacillus strains isolated from dry fermented sausages. Journal of Applied Microbiology 75: 344–349.

    CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Pradeep Kumar Das Mohapatra.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ganguly, A., Banerjee, A., Mandal, A. et al. Isolation and Characterization of Bacteria from the Intestine of Clarias batrachus for Probiotic Organism. Proc Zool Soc 72, 411–419 (2019). https://doi.org/10.1007/s12595-018-0283-x

Download citation

Keywords

  • Aquaculture
  • Clarias batrachus
  • Probiotic
  • Antagonistic effect