Skip to main content
Log in

Geochemistry of Stream Sediments from Eastern Ghats Mobile Belt, India: Implications on Sediment Type, Maturity, Source-area Weathering and Provenance

  • Original Article
  • Published:
Journal of the Geological Society of India

Abstract

During their flow through an area, the streams are used to erode, transport and re-deposit sediments in the number of cycles following the climatic variation in an area. This cycle in turn affect the chemistry of these sediments and hence the geochemical study of these sediments helps to understand the palaeo-climate, source-area weathering and provenance of the study area. In order to understand the geochemical classification of sediments, palaeo-climate, source-area weathering and provenance for stream sediments of the Eastern Ghats Mobile Belt (EGMB), 364 stream sediment samples were collected from the area around Daringbadi, Kandhamal district, Odisha, India and analyzed for major oxides, trace elements and rare earth elements. These sediments are geochemically classified as shaly and wacke type, moderately mature and derived through the high intensity of weathering of source rock under warm and humid climatic condition. The positive correlation between Al2O3 and Fe2O3, MnO, and MgO, indicates multiple sources for sediment and these oxides are associated with clay minerals. The discrimination function diagram suggests a felsic igneous as well as quartzo-sedimentary provenance for these sediments whereas the ratio of Al2O3/TiO2 and concentration of V-Ni-Th suggest a felsic igneous source rock. The high concentration of LREE, slight enrichment of HREE and negative Eu anomaly indicate terrestrial or continental crust source rock. Hence the source rock for these sediments are granite gneiss, charnokite and khondalite present in and around Daringbadi area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmad, I., and Chandra, R. (2013) Geochemistry of loess-paleosol sediments of Kashmir Valley, India: provenance and weathering. Jour. Asian Earth Sci., v.66, pp.73–89.

    Article  Google Scholar 

  • Amajor, L.C. (1987) Major and trace elements geochemistry of Albin and Touronianshales from the Southern Benue trough, Nigeria. Jour. African Earth Sci., v.6(5), pp.633–641.

    Google Scholar 

  • Anders, E. and Grevesse, N., (1989) Abundance of elements: Meteoritic and solar. Geochim. Cosmochim. Acta, v.53(1), pp.197–214.

    Article  Google Scholar 

  • Armstrong-Altrin, J.S. (2020) Detrital zircon U-Pb geochronology and geochemistry of the Riachuelos and Palma Sola beach sediments, Veracruz State, Gulf of Mexico: a new insight on palaeoenvironment. Jour Palaeogeogr., v.9(28), pp.1–27.

    Google Scholar 

  • Armstrong-Altrin, J. S., Botello, A. V., Villanueva, S. F. and Soto, L. A. (2019) Geochemistry of surface sediments from the northwestern Gulf of Mexico: implications for provenance and heavy metal contamination. Quarternary Geol., v.63(3), pp.522–538.

    Google Scholar 

  • Armstrong Altrin, J.S., Lee, Y.I., Kasper Zubillaga, J.J., and Trejo Ramírez, E. (2017) Mineralogy and geochemistry of sands along the Manzanillo and El Carrizal beach areas, southern Mexico: implications for palaeo-weathering, provenance and tectonic setting. Geol. Jour., v.52(4), pp.559–582.

    Article  Google Scholar 

  • Armstrong-Altrin, J. S., Lee, Y., Verma, S.P. and Ramasamy, S. (2004) Geochemistry of sandstones from the Upper Miocene Kudankulam Formation, south India: implications for provenance weathering and tectonic setting. Jour. Sediment. Res., v.74(2), pp.285–297.

    Article  Google Scholar 

  • Armstrong-Altrin, J.S., Madhavaraju, J., Vega-Bautista, F., Ramos-Vázquez, M.A., Pérez-Alvarado, B.Y., Kasper-Zubillaga, J.J., and Bessa, A.Z.E. (2021) Mineralogy and geochemistry of Tecolutla and Coatzacoalcos beach sediments, SW Gulf of Mexico. Appl. Geochem., v.134, 105103.

    Article  Google Scholar 

  • Babu, K. (2017) Geochemical characteristics of sandstones from Cretaceous Garudamangalam area of Ariyalur, Tamilnadu, India: Implications of provenance and tectonic setting. Jour. Earth Syst. Sci., v.126(45), pp.1–12.

    Google Scholar 

  • Bhat, N.A., Singh, B.P., Bhat, A.A., Nath, S., and Guha, D.B. (2019) Application of geochemical mapping in unraveling paleoweathering and provenance of Karewa deposits of South Kashmir, NW Himalaya, India. Jour. Geol. Soc. India, v.93, pp.68–74.

    Article  Google Scholar 

  • Bhatia, M.R. (1983) Plate tectonics and geochemical composition of sandstones. Jour. Geol., v.91, pp.611–627.

    Article  Google Scholar 

  • Bhatia, M.R. and Crook, K.A.W. (1986) Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins. Contrib. Mineral. Petrol., v.92, pp.181–193.

    Article  Google Scholar 

  • Bhatt, M.I. and Ghosh, S.K. (2001) Geochemistry of 2.51Ga old Rampur Group pelites, western Himalayas: Implications from their provenance and weathering. Precambrian Res., v.108, pp.1–16.

    Article  Google Scholar 

  • Bhuiyan, M.A.H., Rhaman, M.J.J., Dampare, S.B. and Suzuki, S. (2011) Provenance, tectonics, and source weathering of modern fluvial sediments of the Brahmaputra-Jamuna River, Bangladesh: inference from geochemistry. Jour. Geochem. Explor., v. 111, pp.113–137.

    Article  Google Scholar 

  • Blatt, H., Middleton G. and Murray R. (1972) Origin of sedimentary rocks. Prentice-Hall, Eaglewood Cliffs, New Jersey, 634p.

    Google Scholar 

  • Bock, B., McLennan, S.M. and Hanson, G.N. (1998) Geochemistry and provenance of the Middle Ordovician Austin Glen Member (Normanskill Formation) and the Taconian Orogeny in New England. Jour. Sediment., v.45, pp.635–655.

    Article  Google Scholar 

  • Bracciali, L., Marroni, M., Luca, P., and Sergio, R. (2007) Geochemistry and petrography of Western Tethys Cretaceous sedimentary covers (Corsica and Northern Apennines): from source areas to configuration of margins. Geol. Soc. Amer. Spec. Paper 420, pp.73–93.

  • Chen, J., Wang, Y., Chen, Y., Liu, L., Ji, J., and Lu, H. (2001) Rb and Sr geochemical characterization of the Chinese loess and its implications for palaeomonsoon climate. Acta Geologica-Sinica-Chinese Edition, v.75(2), pp.259–266.

    Google Scholar 

  • Chen, Y., Clark, A. H., Farrar, E., Wasteneys, H. A. H. P., Hodgson, M. J., and Bromley, A. V. (1993) Diachronous and independent histories of plutonism and mineralization in the Cornubian Batholith, southwest England. Jour. Geol. Soc., v.150(6), pp.1183–1191.

    Article  Google Scholar 

  • Condie, K.C. (1993) Chemical composition and evolution of the upper continental crust: contrasting results from surface samples and shales. Chem. Geol., v. 104, pp.1–37.

    Article  Google Scholar 

  • Condie, C.K., Noll, P.D. and Conway, C.M. (1992) Geochemical and detrital mode evidence for two sources of Early Proterozoic sedimentary rocks from the Tonto Basin Super group, central Arizona. Sediment. Geol., v.77, pp.51–76

    Article  Google Scholar 

  • Cox, R., Lowe, D.R. and Cullers, R.L. (1995) The influence of sediment recycling and basement composition on evolution of mudrock chemistry in the southwestern United States. Geochim. Cosmochim. Acta, v.59(14), pp.2919–2940.

    Article  Google Scholar 

  • Cullers, R.L. (1988) Mineralogical and chemical changes of soil and stream sediment formed by intense weathering of the Danburg granite, Georgia, U.S.A., Lithos, v.21, pp.301–314.

    Google Scholar 

  • Cullers, R.L. (1994a) The chemical signature of source rocks in size fractions of Holocene stream sediment derived from metamorphic rocks in the wet mountains region, Colorado, USA. Chem. Geol., v.113, pp.327–343.

    Article  Google Scholar 

  • Cullers, R.L. (1994b) The controls on the major-and trace-element variation ofshales, siltstones and sandstones of Pennsylvanian-Permian age from upliftedcontinental blocks in Colorado to platform sediments in Kansas, USA. Geochem. Cosmochim. Acta, v.58, pp.4955–4972.

    Article  Google Scholar 

  • Cullers, R.L. (1995) The controls on themajor and trace element evolution of shales siltstones and sandstones of Ordovician to Tertiary age in the Wet Mountain region Colorado USA. Chem. Geol., v. 123, pp.107–131

    Article  Google Scholar 

  • Cullers, R.L., (2000) The geochemistry of shales, siltstones and sandstones of Pennyslvanian-Permian age, Colorado, USA: implications for provenance and metamorphic studies. Lithos, v.51, pp.181–203.

    Article  Google Scholar 

  • Cullers, R.L., Basu, A. and Suttner, L. (1988) Geochemical signature of provenance in sand-size material in soils and stream sediments near the Tobacco Root batholiths Montana USA. Chem. Geol., v.70, pp.335–348

    Article  Google Scholar 

  • Cullers, R. L. and Podkovyrov, V. N. (2000) Geochemistry of the Mesoproterozoic Lakhanda shales in southeastern Yakutia, Russia: Implications for mineralogical and provenance control, and recycling. Precambrian Res., v. 104(1–2), pp.77–93.

    Article  Google Scholar 

  • Das, S. Nasipuri, P., Bhattacharya, A. and Swaminathan, S. (2008) The thrust contact between theEastern Ghats Belt and the adjoining Bastar craton (Eastern India): Evidence frommafic granulites and tectonic implications. Precambrian Res., v.162, pp.70–85.

    Article  Google Scholar 

  • Dasgupta, S. (1995). Pressure-temperature evolutionary history of the Eastern Ghats granulite province: recent advances and some thoughts. Mem. Geol. Soc. India, v.34, pp.101–110.

    Google Scholar 

  • Dasgupta, S. and Sengupta, P. (2006) Ultrametamorphism in Precambrian granulite terranes:Evidence from Mg-AI granulites and calc-silicate granulites of the Eastern Ghats, India. Geol. Jour., v.30(3–4), pp.307–318.

    Google Scholar 

  • Dobmeir, C. and Raith, M. (2003) Crustal architechture and evolution of the Eastern Ghats Belt and adjacent regions of India. Geol. Soc. London, Spec. Publ., No. 206, pp.145–168.

    Article  Google Scholar 

  • Duzgoren-Aydin, N. S., Aydin, A. and Malpas, J. (2002) Reassessment of chemical weathering indices: case study on pyroclastic rocks of Hong Kong. Eng. Geol., v.63, pp.99–119.

    Article  Google Scholar 

  • Fedo, C.M., Nesbitt, H.W. and Young, G.M. (1995) Unravelling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance. Geol., v.23(10), pp.921–924.

    Article  Google Scholar 

  • Fedo, C.M., Young, G.M., Nesbitt, H.W. and Hanchar, J.M. (1997) Potassic and sodic metasomatism in the Southern Province of the Canadian Shield: Evidence from the Paleoproterozoic Serpent Formation, Huronian Supergroup, Canada. Precambrian. Res., v.84, pp.17–36.

    Article  Google Scholar 

  • Gang, L. and Dongsheng, Z. (2007) Application of microelements analysis in identifying sedimentary environment: Taking Qianjiang Formation in the Jianghan Basin as an example. Petrol. Geol. Experi., v.29(3), pp.307–314.

    Google Scholar 

  • Garver, J.I. and Scott, T.J., (1995) Trace elements in shale as indicators of crustal provenance and terrane accretion in the southern Canadian Cordillera. GSA Bull., v. 107(4), pp.440–453.

    Article  Google Scholar 

  • Geological Survey of India, All India Unified Legend (2017).

  • Geological Survey of India (1966-68) Geological Map Series (1:50K), Toposheet No. 74A01.

  • Geological Survey of India (2011) Miscellaneous publication No. 30, part iii - Odisha.

  • Geological Survey of India (2014) Standard operating procedure for National Geochemical Mapping & Quality management.

  • Gromet, L.P., Dymek, R.F., Haskin, L.A. and Korotev, R.L. (1984) The’ North American Shale Composite’: its compilation, major and trace element characteristics. Geochim. Cosmochim. Acta., v.48, pp.2469–2482.

    Article  Google Scholar 

  • Gu, X. X., Liu, J. M., Zheng, M. H., Tang, J. X., and Qt, L. (2002) Provenance and Tectonic setting of the Proterozoic turbidites in Hunan, South China: Geochemical Evidence: Jour, Sediment, Res., v.72, pp.393–407.

    Article  Google Scholar 

  • Gupta, S. (2004) The Eastern Ghats Belt, India - a new look at an old orogen. Geol. Surv. India., Spec. Publ., No.84, pp.75–100.

    Google Scholar 

  • Harnois, L. (1988) The C.I.W. index: a new chemical index of weathering. Sediment. Geol., v.55, pp.319–322.

    Article  Google Scholar 

  • Hayashi, K., Fujisawa, H., Holland, H. and Ohmoto, H. (1997) Geochemistry of ~1.9 Ga sedimentary rocks from northeastern Labrador, Canada. Geochim. Cosmochim. Acta, v.61 (19), pp.4115–4137.

    Article  Google Scholar 

  • Herron, M. M. (1988) Geochemical classification of terrigenous sands and shales from core or log data. Jour. Sediment. Petrol., v.58(5), pp.820–829.

    Google Scholar 

  • Jinhua, F., Shixiang, L., Liming, X., and Xiaobing, N. (2018) Paleo-sedimentary environmental restoration and its significance of Chang 7 Member of Triassic Yanchang Formation in Ordos Basin, NW China. Petrol. Explor. Develop., v.45(6), 998–1008.

    Article  Google Scholar 

  • Johnsson, M. J. and Basu, A. (1993) Processes Controlling the Composition of Clastic Sediments. Geol. Soc. Amer., Special Paper, 284, 342p.

  • Kirkwood, C., Everett, P., Ferreira, A. and Lister, B., (2016) Stream sediment geochemistry as a tool for enhancing geological understanding: an overview of new data from southwest England. Jour. Geochem. Explor., v. 163, pp.28–40.

    Article  Google Scholar 

  • Leelanandam, C., Burke, K., Ashwal, L. D., and Webb, S. J. (2006) Proterozoic mountain building in Peninsular India: an analysis based primarily on alkaline rock distribution. Geol. Mag., v. 143(2), pp.195–212.

    Article  Google Scholar 

  • Lindsey, D. A. (1999) An Evaluation of Alternative Chemical Classifications of Sandstones. USGS Open-File Report, 99–346: 23p.

  • Madhavaraju, J., (2015) In: Ramkumar, M. (Ed.), Geochemistry of Campanian-Maastrichtian Sedimentary Rocks in the Cauvery Basin, South India: Constrain on Paleoweathering, Provenance and End Cretaceous Environments, Chemostratigraphy: Concepts, Techniques and Applications. Elsevier Special, pp.185–214.

  • Madhavaraju, J., Armstrong-Altrin, J.S., Pillai, R.B. and Pi-Puig, T., (2021) Geochemistry of sands from the Huatabampo and Altata beaches. Gulf of California, Mexico. Geol. Jour. v.56(5), pp.2398–2417

    Article  Google Scholar 

  • Madhavaraju, J. and Lee, YIL (2010) Influence of Deccan volcanism in the sedimentary rocks of Late Maastrichtian Danian age of Carvery basin South India: constraints from geochemistry. Curr Sci., v.98(4), pp.528–537

    Google Scholar 

  • Madhavaraju, J. and Ramasamy, S. (2002) Petrography and major element geochemistry of Late Maastrichtian-Early Palaeocene sediments of Tiruchirapalli Tamil Nadu: palaeoweathering and provenance implications. Jour. Geol. Soc. India, v.59(2), pp.133–142.

    Google Scholar 

  • Mahjoor, A.S., Karimi, M., and Rastegarlari, A. (2009) Mineralogical and geochemical characteristics of clay deposits from South Abarkouh districtof clay deposit (Central Iran) and their applications. Jour. Appl. Sci., v.9(4), 601–614.

    Article  Google Scholar 

  • Marx, S. K. and Kamber, B. S., (2010) Trace-element systematic of sediments in the Murray- Darling Basin, Australia: sediment provenance and paleoclimate implications of fine scale chemical heterogeneity. Appl. Geochem., v.25, pp.1221–1237.

    Article  Google Scholar 

  • McLennan, S.M., (1989) Rare earth elements in sedimentary rocks; influence of provenance and sedimentary processes. In: Lipin, B.R., McKay, G.A. (Eds.), Geochemistry and Mineralogy of Rare Earth Elements. Rev. Mineral., v.21, pp.169–200.

  • McLennan, S. M. (1993) Weathering and global denudation. Jour. Geol., v. 101, pp.295–303.

    Article  Google Scholar 

  • McLennan, S.M. and Taylor, S.R. (1991) Sedimentary rocks and crustal evolution tectonic setting and secular trends. Jour. Geol., v.99, pp.1–21.

    Article  Google Scholar 

  • McLennan, S.M., Hemming, S., McDaniel, D.K. and Hanson, G.N. (1993) Geochemical approaches to sedimentation, provenance and tectonics. Geol. Soc. Amer. Spec. Paper 284, pp.21–40.

  • Mohan, A., Tripathi, P., & Motoyoshi, Y. (1997). Reaction history of sapphirine granulites and a decompressional PT path in a granulite complex from the Eastern Ghats. Proc. Indian Acad. Sci. (Earth Planet. Sci.), v.106, pp.115–129.

    Article  Google Scholar 

  • Nanda, J.K. (2008) Tectonic framework of Eastern Ghats Mobile Belt: an overview. Mem. Geol. Soc. India, No.74, pp.63–87.

    Google Scholar 

  • Nanda, J.K. and Pati, U.C. (1989) Field relations and petrochemistry of granulites and associated rocks in the Ganjam-Koraput sector of the Eastern Ghats Belt. Indian Minerals, v.43, pp.247–264.

    Google Scholar 

  • Narayanaswami, S. (1975) Proposal for Charnockite - Khondalite System in the Archaeanshield of Peninsular India. Geol. Surv. India Misc. Publ. No.23, pp.1–16.

    Google Scholar 

  • Nesbitt, H.W. and Young, G.M. (1982) Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature, v.299, pp.715–717

    Article  Google Scholar 

  • Nesbit, H.W. and Young, G.M. (1984) Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic consideration. Geochim. Cosmochim Acta, v.48, pp.1523–1534.

    Article  Google Scholar 

  • Nesbitt, H.W., Young, G.M., McLennan, S.M. and Keays, R.R., (1996) Effect of chemical weathering and sorting on the petrogenesis of siliciclastic sediments, with implications for provenance studies. Jour. Geol., v.104, pp.525–542.

    Article  Google Scholar 

  • Obasi, R.A., Madukwe, H.Y. and Nanabo, P.N. (2020) Geochemistry, weathering intensity and paleo-climatic conditions of soils around dumpsites from Ibadan, Oyo state, Nigeria. European Jour. Basic Appl. Sci., v.7(1), pp.15–32.

    Google Scholar 

  • Paikaray, S., Banerjee, S., and Mukherji, S. (2008) Geochemistry of shales from Paleoproterozoic to Neoprotzoic Vindhyan Super-group: Implications on provenance, tectonic and paleoweathering. Jour. Asia Earth Sci., v.32, pp.34–48.

    Article  Google Scholar 

  • Patel, D.K. (2022) Stream Sediment Geochemical Survey of Rare Earth Elements in and Around Daringbadi, Kandhamal District, Odisha. Jour. Geol. Soc. India, v.98, pp.411–416.

    Article  Google Scholar 

  • Perumal, V. (2017) Petrography and geochemistry of calcrete deposit in and around Sathankulam Region, Southern Tamilnadu, India. Ph.D. In: Thesis published at Manonmaniam Sundaranar University. Tirunelveli, Tamil Nadu.

  • Perumal, V. and Udayanapillai, A.V. (2019) Micromorphology and major element geochemistry of calcretes in the Thoppukulam mine section, Sathankulam region, Southern Tamil Nadu, India: implications on depositional environment. Arab. Jour. Geosci., v.12(385), pp.1–12.

    Google Scholar 

  • Pettijohn, F.J., Potter, P.E and Siever, R. (1972) Sand and Sandstone. New York, Springer, 618p.

    Google Scholar 

  • Ramakrishnan, M., Nanda, J.K. and Augustine, P.F. (1998) Geological evolution of the Proterozoic Eastern Ghats Mobile Belt. Geol. Surv. India, Spec. Publ., No.44, pp.1–21.

    Google Scholar 

  • Roser, B.P. and Korsch, R.J. (1986) Determination of tectonic setting of sandstonemudstone suites using SiO2 content and K2O/Na2O ratio. Jour. Geol., v.94, pp.635–650.

    Article  Google Scholar 

  • Roser, B.P. and Korsch, R.J. (1988) Provenance signature of sandstone mudstone suite determined using discriminant function analysis of major element data. Chem. Geol., v.67, pp.119–139.

    Article  Google Scholar 

  • Roser, B.P., Cooper, R.A., Nathan, S. and Tulloch, A.J. (1996) Reconnaissance sandstone geochemistry, provenance, and tectonic setting of the lower Paleozoic terraines of the West Coast and Nelson, New Zealand. New Zealand. Jour. Geol. Geophys., v.39, pp.1–16.

    Article  Google Scholar 

  • Sababa, E., Mbesse, C.O., Wandji Mouko, C.N., Ekoa Bessa, A. Z., and Ndjigui, P.D. (2022) Geochemistry of stream sediments from Eséka area (SW Cameroon): implications for surface process assessment and precious metals (Au, Pd, and Pt) exploration. Jour. Sediment. Environ., v.7(1), pp.43–66.

    Article  Google Scholar 

  • Shaw, R.K., Arima, M., Kagami, H., Fanning, C. M., Shiraishi, K., and Motoyoshi, Y. (1997) Proterozoic events in the Eastern Ghats granulite belt, India: evidence from Rb-Sr, Sm-Nd systematics, and SHRIMP dating. Jour. Geol., v.105(5), pp.645–656.

    Article  Google Scholar 

  • Taylor, S.R. and McLennan, S.M. (1985) The continental crust: Its composition and evolution; Blackwell, Oxford, London.

    Google Scholar 

  • Tucker, M. E. (1981) Sedimentary Petrology: an Introduction. Wiley and Sons, 252p.

  • Udayanapillai, A.V., Perumal, V. and Armstrong-Altrin, J. S. (2020) Provenance weathering, tectonic setting and palaeo-oxygenation condition of the Cretaceous Calcareous Grey Shale (CGS) from the Kallakudi Dalmia Limestone Quarry No: II, Uttatur Group Trichinopoly, Tamil Nadu, India. Himal. Geol., v.41(1), pp.11–20.

    Google Scholar 

  • Wang, W., and Zhou, M.F. (2013) Petrological and geochemical constraints on provenance, paleoweathering, and tectonic setting of the Neoproterozoic sedimentary basin in the eastern Jiangnan Orogen, South China. Jour. Sediment. Res., v.83(11), pp.975–994.

    Google Scholar 

  • Wang, Z., Wang, J., Fu, X., Zhan, W., Armstrong-Altrin, J.S., Yu, F., Feng, X., Song, C. and Zeng, S. (2018) Geochemistry of the Upper Triassic black mudstones in the Qiangtang Basin, Tibet: Implications for paleoenvironment, provenance, and tectonic setting. Jour. Asian Earth Sci., v.160, pp.118–135.

    Article  Google Scholar 

  • Warrier, A.K., Pednekar, H., Mahesh, B.S., Mohan, R., and Gazi, S. (2016) Sediment grain size and surface textural observations of quartz grains in late quaternary lacustrine sediments from Schirmacher Oasis, East Antarctica: Paleoenvironmental significance. Polar Sci., v.10(1), pp.89–100.

    Article  Google Scholar 

  • Wedepohl, H.K. (1995) The composition of the continental crust; Geochim. Cosmochim. Acta, v.59, pp.1217–1232.

    Article  Google Scholar 

  • Xiong, X.H. and Xiao, J.F. (2011) Geochemical indicators of sedimentary environments-a summary. Earth Environ., v.39(3), pp.405–414.

    Google Scholar 

  • Young, S.M., Pitawala, A. and Ishiga, H. (2013) Geochemical characteristics of stream sediments, sediment fractions, soils, and basement rocks from the Mahaweli River and its catchment, Sri Lanka. Chem. Erde, v.73, pp.357–371.

    Article  Google Scholar 

  • Yu, L., Zou, S., Cai, J., Xu, D., Zou, F., Wang, Z., Wu, C. and Liu, M., (2016) Geochemical and Nd isotopic constraints on provenance and depositional setting of the Shihuiding Formation in the Shilu Fe–Co–Cu ore district, Hainan Province, South China. Jour. Asian Earth Sci., v.119, pp.100–117.

    Article  Google Scholar 

Download references

Acknowledgements

The authors express heartfelt gratitude to Director General, Geological Survey of India and Additional Director General & Head of Department, Eastern Region, Geological Survey of India for according necessary permission to publish this manuscript. They are also thankful to Deputy Director General, SU: Bihar for their logistic and technical support during fieldwork. They express their sincere thanks to the former Deputy Director General D.D. Bhattacharya, Dr. Rajesh Asthana, and Dr. Sudipta Sarkar for their logistic support and encouragement. The authors are also thankful to the Director, Chemical Division, Eastern Region, Kolkata, for providing the analytical data for the interpretation of several aspects of the geology of the study area. This paper is the outcome of the Annual Field Season Programme (FSPMIS ID: M1AGCS-GCM/NC/ ER/SU-BR/2018/20801, FS 2018-19) of the Geological Survey of India, State Unit: Bihar, Patna.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dhananjay Kumar Patel.

Additional information

Dhananjay Kumar Patel is presently working at Geological Survey of India, State Unit: Bihar and Patna. He performed conceptualization, methodology, investigation, collection of samples, processing of samples, graphic preparation and writing original manuscript.

Sudipto Nath is presently working at Geological Survey of IndiaState Unit: Bihar and Patna. He was involved in supervision, investigation and review of manuscript.

Electronic Supplementary Material

12594_2023_2483_MOESM1_ESM.pdf

Geochemistry of Stream Sediments from Eastern Ghats Mobile Belt, India: Implications on Sediment Type, Maturity, Source-area Weathering and Provenance

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patel, D.K., Nath, S. Geochemistry of Stream Sediments from Eastern Ghats Mobile Belt, India: Implications on Sediment Type, Maturity, Source-area Weathering and Provenance. J Geol Soc India 99, 1361–1371 (2023). https://doi.org/10.1007/s12594-023-2483-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12594-023-2483-x

Navigation