Skip to main content
Log in

Geochemical and Sedimentological Signatures of Ariyankuppam and Chunnambar Estuarine Sediments, Pondicherry, India: Implications on Weathering and Provenance

  • Original Article
  • Published:
Journal of the Geological Society of India

Abstract

Thirty surface sediment samples collected from Ariyankuppam (N =12) and Chunnambar estuaries (N = 18) located along the coast of Pondicherry, India, are analyzed to understand the nature of weathering and provenance. The granulometric study reveals that sediments are poorly sorted, positively skewed and platykurtic to leptokurtic in nature. The abundance and inverse relationship of SiO2 with other major oxides signify the detention of silica within quartz. The Index of Chemical Variability (ICV) suggests that sediments are compositionally immature and are derived from less weathered source rock. The weathering indices such as the Chemical Index of Alteration (CIA); Chemical Index of Weathering (CIW); Plagioclase Index of Alteration (PIA), and A-CN-K diagram also suggest less intense weathering of parent rocks. The major and trace element ratios viz. Al2O3/TiO2, TiO2/Zr, Cr/V and Y/Ni and discrimination diagrams indicate that estuarine sediment is derived from felsic and intermediate provenance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Similar content being viewed by others

References

  • Absar, N. (2021) Mineralogy and geochemistry of siliciclastic Miocene Cuddalore Formation, Cauvery Basin, South India: Implications for provenance and paleoclimate. Jour. Palaeogeo., v.10(4), pp.602–630.

    Google Scholar 

  • Amajor, L.C. (1987) Major and trace element geochemistry of Albian and Turonian shales from the Southern Benue trough, Nigeria. Jour. African Earth Sci., v.6(5), pp.633–641. doi:https://doi.org/10.1016/0899-5362(87)90002-9

    CAS  Google Scholar 

  • Armstrong-Altrin, J.S., Lee, Y.I., Kasper-Zubillaga, J.J., Trejo-Ramírez, E. (2016) Mineralogy and geochemistry of sands along the Manzanillo and El Carrizal beach areas, southern Mexico: implications for palaeoweathering, provenance and tectonic setting. Geol. Jour. doi:https://doi.org/10.1002/gj.2792.

  • Asiedu, D.K., Dampare, S.B., Sakyi, P. A., Banoeng-Yakubo, B., Osae, S., Nyarko, B.J.B. and Manu, J. (2004) Geochemistry of Paleoproterozoic metasedimentary rocks from the Birim diamondiferous field, southern Ghana: Implications for provenance and crustal evolut ion at the Archean-Proterozoic boundary. Geochem. Jour., v.38(3), pp.215–228. doi:https://doi.org/10.2343/geochemj.38.215

    CAS  Google Scholar 

  • Babeesh, C., Lone, A. and Achyuthan, H. (2017). Geochemistry of Manasbal lake sediments, Kashmir: Weathering, provenance and tectonic setting. Jour. Geol. Soc. India, v.89(5), pp.563–572. doi:https://doi.org/10.1007/s12594-017-0645-4

    CAS  Google Scholar 

  • Babu, K. (2017). Geochemical characteristics of sandstones from Cretaceous Garudamangalam area of Ariyalur, Tamilnadu, India: Implications of provenance and tectonic setting. Jour. Earth Syst. Sci., v.126(3). doi:https://doi.org/10.1007/s12040-017-0821-3

  • Bal Akkoca, D., Eris, K. K., Cadatay, M.N. and Biltekin, D. (2019). The mineralogical and geochemical composition of Holocene sediments from Lake Hazar, Elazyö, Eastern Turkey: implications for weathering, paleoclimate, redox conditions, provenance, and tectonic setting. Turkish Jour. Earth Sci., v.28(5), pp.760–785. doi:https://doi.org/10.3906/yer-1812-8

    Google Scholar 

  • Cai, G., Miao, L., Chen, H., Sun, G., Wu, J. and Xu, Y. (2012) Grain size and geochemistry of surface sediments in northwestern continental shelf of the South China Sea. Environ. Earth Sci., v.70(1), pp.363–380. doi:https://doi.org/10.1007/s12665-012-2133-x

    Google Scholar 

  • Central Ground Water Board (CGWB) (2013) Groundwater Brochure of Puducherry Region U.T of Puducherry, pp. 1e27. http://www.cgwb.gov.in/District_Profile/Puduchery/Puducherry.pdf.

  • Chi, G., Liu, B., Hu, K., Yang, J. and He, B. (2021) Geochemical composition of sediments in the Liao River Estuary and implications for provenance and weathering. Regional Studies in Marine Science, v.45, 101833.doi:https://doi.org/10.1016/j.rsma.2021.101833

    Google Scholar 

  • Cox, R., Lowe, D.R. and Cullers, R.L. (1995) The influence of sediment recycling and basement composition on evolution of mudrock chemistry in the southwestern United States. Geochim. Cosmochim. Acta, v.59(14), pp.2919–2940. doi:https://doi.org/10.1016/0016-7037(95)00185-9

    CAS  Google Scholar 

  • Davies, O.A. and Tawari, C.C. (2010) Season and tide effects on sediment characteristics of trans-okpoka creek, upper bonny Estuary, Nigeria. Agricul. Biol. Jour. North Amer., v.1(2), pp.89–96.

    Google Scholar 

  • Dolui, G., Chatterjee, S. and Das Chatterjee, N. (2016) Geophysical and geochemical alteration of rocks in granitic profiles during intense weathering in southern Purulia district, West Bengal, India. Mod. Earth Syst. Environ., v.2(3). doi:https://doi.org/10.1007/s40808-016-0188-5

  • Dyer, K. (2019) Estuarine Circulation. Encyclopedia of Ocean Sciences, pp.67–73. doi:https://doi.org/10.1016/b978-0-12-409548-9.11427-7

  • Ekoa Bessa, A.Z., Ndjigui, P.-D., Fuh, G.C., Armstrong-Altrin, J. S. and Betsi, T.B. (2021) Correction to: Mineralogy and geochemistry of the Ossa lake Complex sediments, Southern Cameroon: implications for paleo-weathering and provenance. Arab. Jour. Geosci., v.14(7). doi:https://doi.org/10.1007/s12517-021-06939-1

  • Fedo, C.M., Nesbitt, H.W. and Young, G.M (1995) Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance. Geology, v.23, pp.921–924. doi:https://doi.org/10.1130/0091-7613(1995)0232.3.CO;2

    CAS  Google Scholar 

  • Garver, J.I., Royce, P.R. and Smick, T.A. (1996) Chromium and nickel in shale of the Taconic foreland: A case study for the provenance of fine grained sediments with an ultramafic source. Jour. Sediment. Res., v.66, pp.100–106.

    CAS  Google Scholar 

  • Garver, J.I. and Scott, T.J. (1995) Trace elements in shale as indicators of crustal provenance and terrain accretion in south Canadian Cordillera. Geol. Soc. Amer. Bull., v.107, pp.440–453.

    CAS  Google Scholar 

  • Gerald M. Friedman. (1967) Dynamic Processes and Statistical Parameters Compared for Size Frequency Distribution of Beach and River Sands. SEPM Jour. Sediment. Res., v.37. doi:https://doi.org/10.1306/74d716cc-2b21-11d7-8648000102c1865d

  • Gromet, L.P., Haskin, L.A., Korotev, R.L. and Dymek, R.F. (1984) The “North American shale composite”: Its compilation, major and trace element characteristics. Geochim. Cosmochim. Acta, v.48(12), pp.2469–2482. doi:https://doi.org/10.1016/0016-7037(84)90298-9

    CAS  Google Scholar 

  • Hayashi, K.I., Fujisawa, H., Holland, H.D. and Ohmoto, H. (1997) Geochemistry of ≤1.9 Ga sedimentary rocks from northeastern Labrador, Canada. Geochim. Cosmochim. Acta, v.61, pp.4115–4137

    CAS  Google Scholar 

  • Hiscott, R.N. (1978) Provenance of Ordovician deep-water sandstones, Tourelle Formation, Quebec, and implications for initiation of the Taconic orogeny. Canadian Jour. Earth Sci., v.15(10), pp.1579–1597. doi:https://doi.org/10.1139/e78-163

    Google Scholar 

  • Hossain, H.M.Z. (2019) Major, trace, and REE geochemistry of the Meghna River sediments, Bangladesh: Constraints on weathering and provenance. Geol. Jour., v.55(5), pp.3321–3343. doi:https://doi.org/10.1002/gj.3595

    Google Scholar 

  • Hossain, M.B., Marshall, D.J. and Venkatramanan, S. (2014) Sediment granulometry and organic matter content in the intertidal zone of the Sungai Brunei estuarine system, northwest coast of Borneo. Carpathian Jour. Earth Environ. Sci., v.9(2), pp.231–239.

    Google Scholar 

  • Hu, J., Li, Q. and Fang, N (2015) Geochemistry characteristics of the Low Permian sedimentary rocks from central uplift zone, Qiangtang Basin, Tibet: insights into source-area weathering, provenance, recycling, and tectonic setting. Arab. Jour. Geosci., v.8, pp.5373–5388.

    CAS  Google Scholar 

  • Jacobson, A.D., Blum, J.D., Chamberlain, C.P., Craw, D. and Koons, P.O. (2003) Climatic and tectonic controls on chemical weathering in the New Zealand Southern Alps. Geochim. Cosmoschim. Acta, v.67(1), pp.29–46. doi:https://doi.org/10.1016/s0016-7037(02)01053-0

    CAS  Google Scholar 

  • Kalaivanan, R., Jayaprakash, M., Nethaji, S., Gopal, V., & Giridharan, L. (2016) Geochemical variations of core sediments of Pichavaram Lagoon, southeast coast of Tamil Nadu, India: a provenance and paleoenvironmental study. Environ. Earth Sci., v.75(16). doi:https://doi.org/10.1007/s12665-016-5993-7

  • López-González, N., Borrego, J., Ruiz, F., Carro, B., Lozano-Soria, O., & Abad, M. (2006). Geochemical variations in estuarine sediments: Provenance and environmental changes (Southern Spain). Estuarine, Coastal and Shelf Sci., v.67(1–2), pp.313–320. doi:https://doi.org/10.1016/j.ecss.2005.11.028

    Google Scholar 

  • Mandaokar, B.D. and Mukherjee, D. (2014) Palynostratigraphy of the Cuddalore Formation (early Miocene) of Panruti, Tamil Nadu, India. Jour. Palaeontol. Soc. India, v.59(1), pp.69e80.

    Google Scholar 

  • McLennan, S.M., Hemming, S.R., McDaniel, D.K. and Hanson, G.N. (1993) Geochemical approaches to sedimentation, provenance, and tectonics. Geol. Soc. Amer. Spec. Paper 284, pp.21–40. doi: https://doi.org/10.1130/SPE284-p21

    Google Scholar 

  • Mir, I. A. and Mir, R. A. (2019) Geochemistry of surface sediments in parts of Bandipora-Ganderbal areas, Kashmir valley, western Himalaya: Implications for provenance and weathering. Jour. Earth Syst. Sci., v.128(8). doi:https://doi.org/10.1007/s12040-019-1248-9

  • Mohan, P.M., and Damodaran, K.T. (1990) Studies on the texture, mineralogy and geochemistry of the modern sediments of the Vellar estuary. PhD diss., Marine Geology, School of Marine Sciences.

  • Nesbitt, H. W. and Young, G. M. (1982) Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature, v.299(5885), pp.715–717. doi:https://doi.org/10.1038/299715a0

    CAS  Google Scholar 

  • Nesbitt, H.W. and Young, G.M. (1996) Petrogenesis of sediments in the absence of chemical weathering: effects of abrasion and sorting on bulk composition and mineralogy. Sediment., v.43, pp.341–358.

    CAS  Google Scholar 

  • Nirmala, V., Leelavathy, K. R., Sowndharya, S. and Bama, P. (2015) A Fuzzy Inference System for Water Quality of Chunnambar River, Puducherry. Appl. Mech. Mater., v.787, pp.322–326. doi:https://doi.org/10.4028/www.scientific.net/amm.787.322

    Google Scholar 

  • Parthasarathy, P., Madhavaraju, J., Ramirez Montoya, E. and Ramasamy, S. (2020) Geochemistry of estuarine sediments from Marakkanam area, Tamil Nadu, India: source area weathering and provenance implications. Arab. Jour. Geosci., v.13(4). doi:https://doi.org/10.1007/s12517-019-5008-6

  • Pettijohn, F.J., Potter, P.E. and Siever, R. (1972) Texture. In: Sand and Sandstone, Springer SSE, pp.68–101. doi:https://doi.org/10.1007/978-1-4615-9974-6_3

  • Potter, I.C., Chuwen, B. M., Hoeksema, S.D. and Elliott, M. (2010) The concept of an estuary: A definition that incorporates systems which can become closed to the ocean and hypersaline. Estuarine Coastal and Shelf Sci., v.87(3), pp.497–500. doi:https://doi.org/10.1016/j.ecss.2010.01.021

    CAS  Google Scholar 

  • Pritchard, D.W. (1967) What is an estuary: physical viewpoint. American Association for the Advancement of Science.

  • Rahman, M.A., Das, S.C., Pownceby, M.I., Tardio, J., Alam, M. S. and Zaman, M.N. (2020) Geochemistry of Recent Brahmaputra River Sediments: Provenance, Tectonics, Source Area Weathering and Depositional Environment. Minerals, v.10(9), pp.813. doi:https://doi.org/10.3390/min10090813

    CAS  Google Scholar 

  • Rajagopalan, N. (1965) Late Cretaceous and Early Tertiary stratigraphy of Pondicherry, south India. Jour. Geol. Soc. India, v.6, pp.104–121.

    Google Scholar 

  • Rajkumar, P., Kumar, R.S., Kumarvel, S., Bagyaraj, M., Rajaprian, K. and Venkatesan, S. (2015) A Study on Shoreline Changes in Parts of Pondicherry and Tamil Nadu Using Remote Sensing and GIS Techniques. Internat. Jour., v.3(12), pp.917–932.

    Google Scholar 

  • Ramasamy, S.M., Joyce, E.B. and Bishop, I. (2001). Tectonically induced environmental problems on and off Pondicherry coast, Tamil Nadu, India–A vision through remote sensing. In: Proc. Vol. of Asian Conference on Remote Sensing, pp.666–670.

  • Resmi, M.R. and Achyuthan, H. (2018) Lower Palar River Sediments, Southern Peninsular, India: Geochemistry, Source-Area Weathering, Provenance and Tectonic Setting. Jour. Geol.Soc. India, v.92(1), pp.83–91. doi:https://doi.org/10.1007/s12594-018-0956-0

    CAS  Google Scholar 

  • Roser, B.P. and Korsch, R.J. (1988) Provenance signatures of sandstone-mudstone suites determined using discriminant function analysis of majorelement data. Chem. Geol., v.67, pp.119–139.

    CAS  Google Scholar 

  • Rudnick, R. L. and Gao, S. (2003). Composition of the Continental Crust. Treatise on Geochemistry, pp.1–64. doi:https://doi.org/10.1016/b0-08-043751-6/03016-4

  • Schieber, J. (1992) A combined petrographical-geochemical provenance study of the Newland formation, Mid-Proterozoic of Montana. Geol. Mag., v.129, pp.223–237.

    CAS  Google Scholar 

  • Selvaraj, K., Ram Mohan, V. and Szefer, P. (2004) Evaluation of metal contamination in coastal sediments of the Bay of Bengal, India: geochemical and statistical approaches. Mar. Pol. Bull., v.49(3), pp.174–185. doi:https://doi.org/10.1016/j.marpolbul.2004.02.006

    CAS  Google Scholar 

  • Shi, J.Z. (2010) Estuaries: Dynamics, Mixing, Sedimentation and Morphology David Prandle. Estuaries: Dynamics, Mixing, Sedimentation and Morphology. Jour. Coast.Res, v.263, pp.586–587. doi:https://doi.org/10.2112/jcoastres-d-09-00121.1

    Google Scholar 

  • Singh, P. (2011) Weathering and chemical variability in Ganga Plain sediments. In: D.S. Singh and N.L. Chabra (Eds), Geological processes and climate change. Mcmillan publishers India Ltd., pp.257–268.

  • Sonfack, A.N., Ngueutchoua, G., Ngagoum Kontchipe, Y.S., Sopie, F.T., Nkouathio, D.G., Wouatong, A.S.L., … Njanko, T. (2021) Mineralogical and geochemical signatures of surface stream sediments from Dibamba River basin, SW Cameroon: Implications for provenance, weathering, and tectonic setting. Jour. African Earth Sci., v.181, 104251. doi:https://doi.org/10.1016/j.jafrearsci.2021.104251

    CAS  Google Scholar 

  • Sundaram, R., Henderson, R.A., Ayyasami, K., Stilwell, J.D. (2001) A lithostratigraphic revision and palaeoenviron- mental assessment of the Cretaceous system exposed in the onshore Cauvery Basin, Southern India. Cretaceous Res., v.22, 743e762.

    Google Scholar 

  • Tawfik, H.A., Salah, M.K., Maejima, W., Armstrong-Altrin, J. S., Abdel-Hameed, A.-M. T. and El Ghandour, M.M. (2017) Petrography and geochemistry of the Lower Miocene Moghra sandstones, Qattara Depression, north Western Desert, Egypt. Geol. Jour., v.53(5), pp.1938–1953. doi:https://doi.org/10.1002/gj.3025

    Google Scholar 

  • Taylor, S.R. and McLennan, S.M. (1985) The Continental Crust: Its composition and Evolution. Blackwell, Oxford, 312p.

    Google Scholar 

  • Timothy Oyedotun, T.D. (2016) Sediment Characterisation in an Estuary-Beach System. Jour. Coastal Zone Managmt., v.9(3). doi:https://doi.org/10.4172/2473-3350.1000433

  • Uncles, R.J., Stephens, J.A. and Harris, C. (2014) Freshwater, tidal and wave influences on a small estuary. Estuarine Coastal Shelf Sci., v.150, pp.252–261. doi:https://doi.org/10.1016/j.ecss.2014.05.035

    Google Scholar 

  • Varga, A., Szakmány, G., Raucsik, B. and Máthé, Z. (2005) Chemical composition, provenance and early diagenetic processes of playa lake deposits from the Boda Siltstone Formation (Upper Permian), SW Hungary. Acta Geol. Hung., v.48(1), pp.49–68. doi:https://doi.org/10.1556/ageol.48.2005.1.2

    CAS  Google Scholar 

  • Varghese, T.I., Nageshrao, P.T., Raghavendramurthy, N. and Ramasamy, N. (2018) Sediment geochemistry of coastal environments, southern Kerala, India: implication for provenance. Arab. Jour. Geosci., v.11(3). doi:https://doi.org/10.1007/s12517-018-3406-9

  • Vijayakumar, G., Sivasankaran, M. A., & Murugaiyan, V. (2012). Studies on the pollution levels in Ariyankuppam backwater, Puducherry region. Internat. Jour. Sci. Environ., v.5, pp.363–376.

    Google Scholar 

  • Wronkiewicz, D.J. and Condie, K.C. (1987) Geochemistry of Archean shales from the Witwatersrand Supergroup, South Africa: Source-area weathering and provenance. Geochim. Cosmochim. Acta, v.51(9), pp.2401–2416. doi:https://doi.org/10.1016/0016-7037(87)90293-6

    CAS  Google Scholar 

  • Wronkiewicz, D.J. and Condie K.C. (1989) Geochemistry and provenance of sediments from the Pongola Supergroup, South Africa: evidence for a 3.0 Ga old continental craton. Geochim. Cosmochim. Acta, v.53, pp.1537–1549.

    CAS  Google Scholar 

  • Yong Il Lee (2002), Provenance derived from the geochemistry of late Paleozoic–early Mesozoic mudrocks of the Pyeongan Supergroup, Korea, Sediment. Geol., v.149(4), pp.219–235. doi:https://doi.org/10.1016/S0037-0738(01)00174-9.

    CAS  Google Scholar 

Download references

Acknowledgement

We sincerely thank the Department of Earth Sciences and Central Instrumentation Facility of Pondicherry University for providing the necessary facilities for the entire work. And we extend our sincere thanks to the editor and anonymous reviewer for their cherished suggestions for bringing this research paper to the current level. The corresponding author also thanks CSIR-HRDG for his Research Associate fellowship vide F.No. 09/0559(12548)/2021-EMR-I

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Sridharan.

Additional information

N. Kirubakaran, the first author of the manuscript is currently working as a lab assistant at the Central Instrumentation Facility (CIF) at Pondicherry University. He is actively involved in sample collection, Data curation, formal analysis and writing–original draft

Dr. M. Sridharan (Corresponding Author) is working as CSIR-Research Associate in the Department of Earth Sciences, Pondicherry University. His contributions for this research article are conceptualization, sample collection, data curation, formal analysis, interpretation, writing and editing–original draft.

Prof. D. Senthil Nathan Senior Professor in the Department of Earth Sciences, Pondicherry University played a vital role in data curation, validation, and framing methodology. He also provided necessary resources for the study and supervised the work.

S. Harikrishnan is currently working as research scholar in the Department of Earth Sciences, Pondicherry University. He is involved in the analysis, review and editing.

Dr. M. Rajamanickam is working as Assistant Professor, V.O. Chidambaram College, Tuticorin, Tamil Nadu. He earlier worked as Senior Researcher at the Department of Radioecology and Fukushima Project, National Institutes for Quantum and Radiological Science and Technology (QST), Chiba, Japan. He played vital role in interpreting, writing, reviewing and editing.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kirubakaran, N., Sridharan, M., Senthil Nathan, D. et al. Geochemical and Sedimentological Signatures of Ariyankuppam and Chunnambar Estuarine Sediments, Pondicherry, India: Implications on Weathering and Provenance. J Geol Soc India 99, 1275–1284 (2023). https://doi.org/10.1007/s12594-023-2461-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12594-023-2461-3

Navigation