Skip to main content

Advertisement

Log in

A Review on CO2 Sequestration: The Indian Scenario

  • Original Article
  • Published:
Journal of the Geological Society of India

Abstract

To address the carbon dioxide (CO2) and other green-house gas (GHG) emission issues and combat climate change, various world summits have taken place starting with the United Nations Framework Convention on Climate Change (UNFCCC) at Rio in 1992 to the COP26 at Glasgow in 2021. Although the Paris Agreement of 2015, a legally binding international treaty intended to keep global average temperature rise below 2°C (preferably 1.5°C), it appears too tough a target considering the present day scenarios of insincerity by the advanced and rich nations. On the other hand, adaptation of CCS (carbon capture and storage) technologies in industrial scale have not yet been possible because of economic unviability. Although the western countries such as the USA and the EU have invested considerable amount of funds for R&D to make the CCS technologies successful, the developed technologies are only up to the pilot scale. More funding and focused R&D are needed to make the proven CCS technologies economic in industrial scales. The R&D efforts by other countries are still insignificant. India being the fourth largest emitter of GHGs in the world, is a signatory to most of the global treaties and is trying to adopt various CCS technologies. However, no significant progress has been made so far although some initiations have been observed after the recent pledge made by the Hon. Prime Minister of India in COP26 at Glasgow for a ‘net zero’ carbon by 2070. Industrial utilization of CO2 is negligible in the country except that Tata Steel Ltd. recently installed a demonstration carbon capture plant (5 TPD CO2) at its Jamshedpur works. There are no visible efforts from the power sectors who are one of the major contributors of CO2. Future availability of CCS technologies to Indian industries shall primarily be determined by the investments they make in R&D to develop the technologies on their own or in collaboration with research laboratories. Substituting carbon with green hydrogen and using renewable energy to run the steel plants would be desirable. Implementation of costly CCS technologies in India would need incentives from government as well as involvement and financial commitment from private industries which has been very low over the years. In this article we have taken a fresh stock of the situation with respect to the global targets set, efforts being made, technological interventions and their adaptability, R&D efforts required, funding opportunities, promises made, the gaps in available technologies, and target accomplishments. Indian status has been reviewed with respect to CCS: where does it stand, what are the challenges and what is the way forward for this fast-growing developing country to address the climate change keeping a balance with its fast growth rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baciocchi, R., Polettini, A., Pomi, R., Prigiobbe, V., von Zedwitz, V. N., and Steinfeld, A. (2006) CO2 Sequestration by Direct Gas Solid Carbonation of Air Pollution Control (APC) Residues. Energy & Fuels, v.20(5), pp.1933–1940. doi:https://doi.org/10.1021/ef060135b.

    Article  Google Scholar 

  • Baris, K., Ozarslan, A. and Sahin, N. (2008) The Assesment for CO2 Sequestration Potential by Magnesium silicate Minerals in Turkey: Cases of Orhaneli-Bursa and Divrigi-Sivas Regions. Energy Exploration & Exploitation, v.26(5), pp.293–309. doi:https://doi.org/10.1260/014459808787945362

    Article  Google Scholar 

  • Bauer, M., Gassen, N., Stanjek, H. and Peiffer, S. (2011). Carbonation of lignite fly ash at ambient T and P in a semi-dry reaction system for CO2 sequestration. Appl. Geochem., v.26(8), pp.1502–1512. doi:https://doi.org/10.1016/j.apgeochem.2011.05.024

    Article  Google Scholar 

  • Ben-Mansour, R., Habib, M. A., Bamidele, O. E., Basha, M., Qasem, N. A. A., Peedikakkal, A., Laoui, T. and Ali, M. (2016) Carbon capture by physical adsorption: Materials, experimental investigations and numerical modeling and simulations–A review. Appl. Energy, v.161, pp.225–255. doi:https://doi.org/10.1016/J.APENERGY.2015.10.011

    Article  Google Scholar 

  • Bhandari, A., Sarin, N. and Chadha, D.K. (2008) Saline Aquifer: Attractive and Cost Effective Sustainable Options for Carbon Dioxide Storage–Indian Perspective. In: M. Goel, B. Kumar, and S. N. Charan (Eds.), Carbon Capture and Storage: R&D Technologies for a Sustainable Energy Future. Narosa Publishing House, New Delhi, pp.105–110

    Google Scholar 

  • BP Statistical Review 2018. (2018) BP Statistical Review of world Energy, British Petroleum (BP), 67th edition, June 2018.

  • Bradbury, J., Ray, I., Peterson, T., Wade, S., Wong-Parodi, G. and Feldpausch, A. (2009) The Role of Social Factors in Shaping Public Perceptions of CCS: Results of Multi-State Focus Group Interviews in the U.S. Energy Procedia, v.1(1), pp.4665–4672. doi:https://doi.org/10.1016/j.egypro.2009.02.289

    Article  Google Scholar 

  • Cai, W-J. and Jiao, N. (2022) Wastewater alkalinity addition as a novel approach for ocean negative carbon emissions. The Innovation, v.3(4), pp.1–2.

    Article  Google Scholar 

  • Canadell, J. G., Mayorga, E., Ciais, P., Lasco, R., Patra, P. K., Oh, N.-H., Hartman, J., Chhabra, A., Niwa, Y., Sarma, V. V. S. S., Houghton, R. A., Piao, S. L., Raymond, P. A., Manjunath, K. R., Bhattacharya, T., Bousquet, P., Wang, T. and Ito, A. (2013). The carbon budget of South Asia. Biogeosciences, v.10(1), pp.513–527. doi:https://doi.org/10.5194/bg-10-513-2013

    Article  Google Scholar 

  • Carty, T., Kowalzig, J. and Zagema, B. (2020) Climate Finance Shadow Report 2020. Oxfam.

  • Costello, A., Abbas, M., Allen, A., Ball, S., Bell, S., Bellamy, R., Friel, S., Groce, N., Johnson, A., Kett, M., Lee, M., Levy, C., Maslin, M., McCoy, D., McGuire, B., Montgomery, H., Napier, D., Pagel, C., Patel, J., & Patterson, C. (2009) Managing the health effects of climate change. The Lancet, v.373(9676), pp.1693–1733. doi:https://doi.org/10.1016/S0140-6736(09)60935-1

    Article  Google Scholar 

  • Davis, S. J., Liu, Z., Deng, Z., Zhu, B., Ke, P., Sun, T., Guo, R., Hong, C., Zheng, B., Wang, Y., Boucher, O., Gentine, P. and Ciais, P. (2022). Emissions rebound from the COVID-19 pandemic. Nature Climate Change, v.12(5), pp.412–414. doi:https://doi.org/10.1038/s41558-022-01332-6

    Article  Google Scholar 

  • De Morais, M.G. and Costa, J.A.V. (2007) Carbon dioxide fixation by Chlorella kessleri, C. vulgaris, Scenedesmus obliquus and Spirulina sp. cultivated in flasks and vertical tubular photobioreactors. Biotechnology Lett., v.29(9), pp.1349–1352. doi:https://doi.org/10.1007/s10529-007-9394-6

    Google Scholar 

  • Dubash, N. K., Hagemann, M., Höhne, N. and Upadhyaya, P. (2013). Developments in national climate change mitigation legislation and strategy. Climate Policy, v.13(6), pp.649–664. doi:https://doi.org/10.1080/14693062.2013.845409

    Article  Google Scholar 

  • Eloneva, S., Teir, S., Revitzer, H., Salminen, J., Said, A., Fogelholm, C.J. and Zevenhoven, R. (2009) Reduction of CO2 emissions from steel plants by using steelmaking slags for production of marketable calcium carbonate. Steel Res. Int., v.80(6), pp.415–421.

    Google Scholar 

  • Falkner, R. (2016) The Paris Agreement and the new logic of international climate politics. International Affairs, v.92(5), pp.1107–1125. doi:https://doi.org/10.1111/1468-2346.12708

    Article  Google Scholar 

  • Fankhauser, S., Gennaioli, C. and Collins, M. (2016) Do international factors influence the passage of climate change legislation? Climate Policy, v.16(3), pp.318–331. doi:https://doi.org/10.1080/14693062.2014.1000814

    Article  Google Scholar 

  • Friedmann, S. J., Dooley, J. J., Held, H. and Edenhofer, O. (2006). The low cost of geological assessment for underground CO2 storage: Policy and economic implications. Energy Conversion and Management, v.47(13–14), pp.1894–1901. doi:https://doi.org/10.1016/j.enconman.2005.09.006

    Article  Google Scholar 

  • Fulke, A. B., Mudliar, S. N., Yadav, R., Shekh, A., Srinivasan, N., Ramanan, R., Krishnamurthi, K., Devi, S. and Chakrabarti, T. (2010). Bio-mitigation of CO2, calcite formation and simultaneous biodiesel precursors production using Chlorella sp. Bioresource Technology, v.101(21), pp.8473–8476. doi:https://doi.org/10.1016/J.BIORTECH.2010.06.012

    Article  Google Scholar 

  • Global carbon project 2021. (n.d.) Global carbon project 2021. Integrated Carbon Observation system. Global Carbon Budget 2021. https://www.icos-cp.eu/science-and-impact/global-carbon-budget/2021.

  • Goel, M. (2009) Recent approaches in CO, fixation research in India and future perspectives towards zero emission coal based power generation. Curr. Sci., v.97, pp.1625–1633.

    Google Scholar 

  • Gordon, J. C., Deines, T. and Havice, J. (2010). Global Warming Coverage in the Media: Trends in a Mexico City Newspaper. Science Communication, v.32(2), pp.143–170. doi:https://doi.org/10.1177/1075547009340336

    Article  Google Scholar 

  • Gupta, A. and Paul, A. (2019). Carbon capture and sequestration potential in India: A comprehensive review. Energy Procedia, v.160, pp.848–855. doi:https://doi.org/10.1016/j.egypro.2019.02.148

    Article  Google Scholar 

  • Gutiérrez, R., Gutiérrez-Sánchez, R. and Nafidi, A. (2008) Trend analysis using nonhomogeneous stochastic diffusion processes. Emission of CO2; Kyoto protocol in Spain. Stochastic Environmental Research and Risk Assessment, v.22(1), pp.57–66. doi:https://doi.org/10.1007/s00477-006-0097-7

    Article  Google Scholar 

  • Herzog H. (2001) What future for carbon capture and sequestration? Environ. Sci. Technol., v.35, pp.148A–53A.

    Article  Google Scholar 

  • Holloway, S., Garg, A., Kapshe, M., Deshpande, A., Pracha, A. S., Khan, S. R., Mahmood, M. A., Singh, T. N., Kirk, K. L. and Gale, J. (2009) An assessment of the CO2 storage potential of the Indian subcontinent. Energy Procedia, v.1(1), pp.2607–2613. doi:https://doi.org/10.1016/j.egypro.2009.02.027

    Article  Google Scholar 

  • IPCC (2013) Intergovernmental Panel on Climate Change 2013. The Physical Science Basis; Cambridge University Press: New York, NY, USA, 2013.

    Google Scholar 

  • Israelsson, P. H., Chow, A. C. and Adams, E. E. (2010) An updated assessment of the acute impacts of ocean carbon sequestration by direct injection. Internat. Jour. Greenhouse Gas Control, v.4(2), pp.262–271. doi:https://doi.org/10.1016/J.IJGGC.2009.10.003

    Article  Google Scholar 

  • Kapetaki, Z., Simjanoviæ, J. and Hetland, J. (2016). European Carbon Capture and Storage Project Network: Overview of the Status and Developments. Energy Procedia, v.86, pp.12–21. doi:https://doi.org/10.1016/j.egypro.2016.01.002

    Article  Google Scholar 

  • Kelemen, P.B. and Matter, J. (2008) In situ carbonation of peridotite for CO2 storage. Proc. Natl. Acad. Sci., v.105(45), pp.17295–17300. doi:https://doi.org/10.1073/pnas.0805794105

    Article  Google Scholar 

  • Khan, M., Robinson, S., Weikmans, R., Ciplet, D. and Roberts, J. T. (2020). Twenty-five years of adaptation finance through a climate justice lens. Climatic Change, v.161(2), pp.251–269. doi:https://doi.org/10.1007/s10584-019-02563-x

    Article  Google Scholar 

  • Kim, H.-J. and Lee, H.-K. (2017) Mineral Sequestration of Carbon Dioxide in Circulating Fluidized Bed Combustion Boiler Bottom Ash. Minerals, v.7(12), pp.237. doi:https://doi.org/10.3390/min7120237

    Article  Google Scholar 

  • Kintisch, E. (2010) An Audacious Decision in Crisis Gets Cautious Praise. Science, v.329(5993), pp.735–736. doi:https://doi.org/10.1126/science.329.5993.735

    Article  Google Scholar 

  • Kulshreshtha, B.N.M. (2000) Carbon Emission Intensity of Power Consumption in India: A Detailed Study of its Indicators. Energy Sources, v.22(2), pp.157–166. doi:https://doi.org/10.1080/00908310050014135

    Article  Google Scholar 

  • Kumar, B., Charan, S.N., Menon, R. and Panicker, S.K. (2007) Geological CO2 sequestration in the basalt formations of western India: A feasibility study. International Workshop on R&D Challenges in Carbon Capture and Storage Technologies for Sustainable Energy Future, NGRI, Hyderabad, NGRI, 2007.

    Google Scholar 

  • Lackner, K. S., Wendt, C. H., Butt, D. P., Joyce, E. L., and Sharp, D. H. (1995) Carbon dioxide disposal in carbonate minerals. Energy, v.20(11), pp.1153–1170. doi:https://doi.org/10.1016/0360-5442(95)00071-N

    Article  Google Scholar 

  • le Quéré, C., Moriarty, R., Andrew, R. M., Peters, G. P., Ciais, P., Friedlingstein, P., Jones, S. D., Sitch, S., Tans, P., Arneth, A., Boden, T. A., Bopp, L., Bozec, Y., Canadell, J. G., Chini, L. P., Chevallier, F., Cosca, C. E., Harris, I., Hoppema, M., & Zeng, N. (2015). Global carbon budget 2014. Earth System Science Data, v.7(1), pp.47–85. doi:https://doi.org/10.5194/essd-7-47-2015

    Article  Google Scholar 

  • Leung, D.Y.C., Caramanna, G. and Maroto-Valer, M.M. (2014) An overview of current status of carbon dioxide capture and storage technologies. Renewable and Sustainable Energy Reviews, v.39, pp.426–443. doi:https://doi.org/10.1016/j.rser.2014.07.093

    Article  Google Scholar 

  • Li, X., Bertos, M. F., Hills, C. D., Carey, P. J. and Simon, S. (2007). Accelerated carbonation of municipal solid waste incineration fly ashes. Waste Management, v.27(9), pp.1200–1206. doi:https://doi.org/10.1016/j.wasman.2006.06.011

    Article  Google Scholar 

  • Li, X., Wei, N., Liu, Y., Fang, Z., Dahowski, R.T. and Davidson, C.L. (2009) CO2 point emission and geological storage capacity in China. Energy Procedia, v.1(1), pp.2793–2800. doi:https://doi.org/10.1016/j.egypro.2009.02.051

    Article  Google Scholar 

  • Mackiewicz, S.M. and Ferguson, E.G. (2005). Stabilization of soil with self-cementing coal ashes. World of Coal Ash (WOCA), 1–7.

  • Maeda, K., Owada, M., Kimura, N., Omata, K. and Karube, I. (1995). CO2 fixation from the flue gas on coal-fired thermal power plant by microalgae. Energy Conversion and Management, v.6(36), pp.717–720.

    Article  Google Scholar 

  • Malhotra, V. M. (1999) Making Concrete “Greener” with Fly Ash. In: Concrete International, v.21(5), pp. 61–66.

    Google Scholar 

  • Mandal, S. and Mallick, N. (2009) Microalga Scenedesmus obliquus as a potential source for biodiesel production. Applied Microbiology and Biotechnology, v.84(2), pp.281–291. doi:https://doi.org/10.1007/s00253-009-1935-6

    Article  Google Scholar 

  • Matsi, T. and Keramidas, V. Z. (1999) Fly ash application on two acid soils and its effect on soil salinity, pH, B, P and on ryegrass growth and composition. Environ. Pollut., v.104(1), pp.107–112. doi:https://doi.org/10.1016/S0269-7491(98)00145-6

    Article  Google Scholar 

  • Meima, J.A., van der Weijden, R.D., Eighmy, T.T. and Comans, R.N.J. (2002) Carbonation processes in municipal solid waste incinerator bottom ash and their effect on the leaching of copper and molybdenum. Appl. Geochem., v.17(12), pp.1503–1513. doi:https://doi.org/10.1016/S0883-2927(02)00015-X

    Article  Google Scholar 

  • Multilateral Development Banks (2020) Joint Report on Multilateral Development Banks’ Climate Finance.

  • Nguyen, L.N., Vu, M.T., Vu, H.P., Johir, Md. A.H., Labeeuw, L., Ralph, P.J., Mahlia, T.M.I., Pandey, A., Sirohi, R. and Nghiem, L.D. (2022) Microalgae-based carbon capture and utilization: A critical review on current system developments and biomass utilization. Critical Reviews in Environmental Science and Technology, pp.1–23. doi:https://doi.org/10.1080/10643389.2022.2047141

  • OECD, (2021) Organisation for Economic Co-operation and Development. Climate Finance Provided and Mobilised by Developed Countries: Aggregate Trends Updated with 2019 Data. Organisation for Economic Co-Operation and Development.

  • Pierrehumbert, R. (2019) There is no Plan B for dealing with the climate crisis. Bull. Atomic Scientists, v.75(5), pp.215–221. doi:https://doi.org/10.1080/00963402.2019.1654255

    Article  Google Scholar 

  • Plaza, M. G., Pevida, C., Arenillas, A., Rubiera, F. and Pis, J. J. (2007). CO2 capture by adsorption with nitrogen enriched carbons. Fuel, v.86(14), pp.2204–2212. doi:https://doi.org/10.1016/J.FUEL.2007.06.001

    Article  Google Scholar 

  • Pollak, M., Phillips, S.J. and Vajjhala, S. (2011). Carbon capture and storage policy in the United States: A new coalition endeavors to change existing policy. Global Environ. Change, v.21(2), pp.313–323. doi:https://doi.org/10.1016/j.gloenvcha.2011.01.009

    Article  Google Scholar 

  • Prakash, V., Ghosh, S. and Kanjilal, K. (2020). Costs of avoided carbon emission from thermal and renewable sources of power in India and policy implications. Energy, v.200, 117522. doi:https://doi.org/10.1016/j.energy.2020.117522

    Article  Google Scholar 

  • Rao, A.B. and Kumar, P. (2014) Cost Implications of Carbon Capture and Storage for the Coal Power Plants in India. Energy Procedia, v.54, pp.431–438. doi:https://doi.org/10.1016/j.egypro.2014.07.285

    Article  Google Scholar 

  • Singh, A.K., Mendhe, V.A. and Garg, A. (2006) CO2 storage potential of geologic formations in India. 8th Greenhouse Gas Technology Conference, Trondheim, Norway. Elsevier, Published on CD.

  • Singh, B. K., Bardgett, R. D., Smith, P. and Reay, D. S. (2010). Microorganisms and climate change: terrestrial feedbacks and mitigation options. Nature Reviews Microbiology, v.8(11), pp.779–790. doi:https://doi.org/10.1038/nrmicro2439

    Article  Google Scholar 

  • Singh, S. and Singh, R.B. (2021) Indian Climate Policy, Programs, and Initiatives, pp. 273–299. doi:https://doi.org/10.1007/978-981-16-4648-5_9

  • Skjånes, K., Lindblad, P. and Muller, J. (2007) BioCO2–A multidisciplinary, biological approach using solar energy to capture CO2 while producing H2 and high value products. Biomolecular Engineering, v.24(4), pp.405–413. doi:https://doi.org/10.1016/J.BIOENG.2007.06.002

    Article  Google Scholar 

  • Staudt, A. C. (2008) Recent Evolution of the Climate Change Dialogue in the United States. Bull. Amer. Meteorol. Soc., v.89(7), pp.975–986. doi:https://doi.org/10.1175/2007BAMS2476.1

    Article  Google Scholar 

  • Stephens, J.C. (2009) Technology leader, policy laggard: CCS development for climate mitigation in the US political context. In: Caching the Carbon. Edward Elgar Publishing.

  • Stephens, J.C., Bielicki, J. and Rand, G.M. (2009). Learning about carbon capture and storage: Changing stakeholder perceptions with expert information. Energy Procedia, v.1(1), pp.4655–4663. doi:https://doi.org/10.1016/j.egypro.2009.02.288

    Article  Google Scholar 

  • Stern, D.I. and Jotzo, F. (2010) How ambitious are China and India’s emissions intensity targets? Energy Policy, v.38(11), pp.6776–6783. doi:https://doi.org/10.1016/j.enpol.2010.06.049

    Article  Google Scholar 

  • Stewart, C. and Hessami, M.A. (2005) A study of methods of carbon dioxide capture and sequestration - The sustainability of a photosynthetic bioreactor approach. Energy Conversion and Management, v.46(3), pp.403–420. doi:https://doi.org/10.1016/j.enconman.2004.03.009

    Article  Google Scholar 

  • Su, F., Lu, C., Cnen, W., Bai, H. and Hwang, J. F. (2009) Capture of CO2 from flue gas via multiwalled carbon nanotubes. Sci. Total Environ., v.407(8), pp.3017–3023. doi:https://doi.org/10.1016/j.scitotenv.2009.01.007

    Article  Google Scholar 

  • Thwaites, J. and Bos, J. (2021) A Breakdown of Developed Countries’ Public Climate Finance Contributions Towards the $100 Billion Goal. World Resources Institute.

  • Tiewsoh, L. S., Sivek, M. and Jirásek, J. (2017) Traditional energy resources in India (coal, crude oil, natural gas): A review. Energy Sources, Part B: Economics, Planning, and Policy, v.12(2), pp.110–118. doi:https://doi.org/10.1080/15567249.2015.1042172

    Article  Google Scholar 

  • Timperley, J. (2021) The broken $100-billion promise of climate finance — and how to fix it. Nature, v.598(7881), pp.400–402. doi:https://doi.org/10.1038/d41586-021-02846-3

    Article  Google Scholar 

  • Ukwattage, N.L. and Ranjith, P. G. (2018) Accelerated Carbonation of Coal Combustion Fly Ash for Atmospheric Carbon Dioxide Sequestration and Soil Amendment: An Overview. Jour. Pollut. Effects & Control, v.06 (01). doi:https://doi.org/10.4172/2375-4397.1000210

  • UNFCCC Report, 2015. (2015) United Nations. Report of the Conference of the Parties on its twenty-first session, held in Paris from 30 November to 13 December 2015..

  • Vogeli, J., Reid, D.L., Becker, M., Broadhurst, J. and Franzidis, J.-P. (2011) Investigation of the potential for mineral carbonation of PGM tailings in South Africa. Minerals Engineering, v.24(12), pp.1348–1356. doi:https://doi.org/10.1016/j.mineng.2011.07.005

    Article  Google Scholar 

  • Wang, C., Larsson, M., Ryman, C., Grip, C.-E., Wikström, J.-O., Johnsson, A. and Engdahl, J. (2008) A model on CO 2 emission reduction in integrated steelmaking by optimization methods. Internat. Jour. Energy Res., v.32(12), pp.1092–1106. doi:https://doi.org/10.1002/er.1447

    Article  Google Scholar 

  • Wanninkhof, R., Park, G.-H., Takahashi, T., Sweeney, C., Feely, R., Nojiri, Y., Gruber, N., Doney, S. C., McKinley, G. A., Lenton, A., le Quéré, C., Heinze, C., Schwinger, J., Graven, H. and Khatiwala, S. (2013) Global ocean carbon uptake: magnitude, variability and trends. Biogeosciences, v.10(3), pp.1983–2000. doi:https://doi.org/10.5194/bg-10-1983-2013

    Article  Google Scholar 

  • Winkler, H. and Beaumont, J. (2010) Fair and effective multilateralism in the post-Copenhagen climate negotiations. Climate Policy, v.10(6), pp.638–654. doi:https://doi.org/10.3763/cpol.2010.0130

    Article  Google Scholar 

  • Xie, Y. P., Ho, S. H., Chen, C. Y., Chen, C. N. N., Liu, C. C., Ng, I. S., Jing, K. J., Yang, S. C., Chen, C. H., Chang, J. S. and Lu, Y. H. (2014). Simultaneous enhancement of CO2 fixation and lutein production with thermo-tolerant Desmodesmus sp. F51 using a repeated fed-batch cultivation strategy. Biochemical Engg. Jour., v.86, pp.33–40. doi:https://doi.org/10.1016/J.BEJ.2014.02.015

    Article  Google Scholar 

  • Zhang, Q., Nurhayati, Cheng, C.L., Nagarajan, D., Chang, J.S., Hu, J. and Lee, D.J. (2017) Carbon capture and utilization of fermentation CO2: Integrated ethanol fermentation and succinic acid production as an efficient platform. Applied Energy, v.206, pp.364–371. doi:https://doi.org/10.1016/J.APENERGY.2017.08.193

    Article  Google Scholar 

  • Zou, C., Zhao, Q., Zhang, G. and Xiong, B. (2016) Energy revolution: From a fossil energy era to a new energy era. Natural Gas Industry B, v.3(1), pp.1–11. doi:https://doi.org/10.1016/j.ngib.2016.02.001

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Prof. S. Basu, Director of CSIR-IMMT Bhubaneswar for his encouragement to work on CCUS and for permitting us to publish this review article. Suchismita Pattanaik is indebted to CSIR, India for a PDF in terms of a Research Associateship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bibhuranjan Nayak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pattanaik, S., Nayak, B. A Review on CO2 Sequestration: The Indian Scenario. J Geol Soc India 99, 1083–1093 (2023). https://doi.org/10.1007/s12594-023-2434-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12594-023-2434-6

Navigation