Skip to main content
Log in

Frequency Analysis of Flood Flow in Markanda Basin of Ghaggar River System in North Western India

  • Original Article
  • Published:
Journal of the Geological Society of India

Abstract

This study aims to estimate the probabilities of occurrence and return periods of peak flood discharges over the Markanda basin of Ghaggar river system in north western India. For this purpose, two most frequently employed probability distribution models, namely Gumbel Extreme Value (GEV) and Log-Pearson Type III (LP-III) have been used to estimate the future flood discharges by means of annual extreme flood series (Qmax) data from 1990 to 2013, available at eight gauge and discharge sites. Two goodness-of-fit tests, i.e., Kolmogorov-Smirnov and Anderson-Darling have been applied to the fitted probability distributions to identify the best-fit model. The Qmax for several return periods, for example 2, 5, 10, 25, 50, 100, and 200 years have been estimated and compared. The return period for the highest Qmax recorded at Jhansa (2670 m3/s) gauge and discharge site has been computed as 9.5 and 8.2 years using the GEV and LP-III distribution model, respectively. The analyses have shown that GEV distribution model has produced the overestimated results in comparison to LP-III distribution model. Also, flood index has been computed for flood regionalization. The flood index values have been found variable at different gauge and discharge sites with an increase in return periods. Finally, the finding of this study will be valuable for water resource engineers in designing the hydraulic structures for the management of recurrent floods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdul-Karim, M.D., Chowdhury, J.U. (1995) A comparison of four distributions used in flood frequency analysis in Bangladesh. Hydrol. Sci. Jour., v.40, pp.55–66.

    Article  Google Scholar 

  • Adane, G.B., Kassa, K.A., Tonl, A.T., Tekle, S.L. (2022) Spatial runoff estimation under different land uses and rainfall frequencies: case of flood-prone Dechatu river catchment, Dire Dawa, Ethiopia. Arabian Jour. Geosci., v.15, 1092.

    Article  Google Scholar 

  • Adhikari, P., Hong, Y., Douglas, K.R., Kirschbaum, D. B., Gourley, J., Adler, R., Brakenridge, G.R. (2010) A digitized global flood inventory (1998-2008): compilation and preliminary results. Natural Hazards, v.55, pp.405–422.

    Article  Google Scholar 

  • Ang, A.H.S., Tang, W. (2007) WH Probability Concepts in Engineering: Emphasis on Applications to Civil and Environmental Engineering, Technology & Engineering, Wiley, New York.

    Google Scholar 

  • Bali, R., Agarwal, K.K., Nawaz, A.S., Srivastava, P. (2011) Is the recessional pattern of Himalayan glaciers suggestive of anthropogenically induced global warming? Arabian Jour. Geosci., v.4, pp.1087–1093.

    Google Scholar 

  • Benameur, S., Benkhaled, A., Meraghni, D., Chebana, F., Necir, A. (2017) Complete flood frequency analysis in Abiod watershed, Biskra (Algeria). Natural Hazards, v.86, pp.519–534.

    Article  Google Scholar 

  • Bhat, C.M., Rao, G.S., Farooq, M., Manjushree, P., Shukla, A., Sharma, S.V.S.P. (2018) Satellite-based assessment of the catastrophic Jhelum floods of September 2014, Jammu & Kashmir, India. Geomatics, Natural Hazards and Risk, v.8, pp.309–327.

    Article  Google Scholar 

  • Bhat, M.S., Alam, A., Ahmad, B., Kotlia, B.S., Farooq, H., Taloor, A.K., Ahmad, S. (2019) Flood frequency analysis of river Jhelum in Kashmir basin. Quaternary Internat., v.507, pp.288–294.

    Article  Google Scholar 

  • Chow, V.T., Maidment, D.R., Mays, L.W. (1988) Applied Hydrology, McGraw Hill Book Company New York.

    Google Scholar 

  • Delgado, J.M., Apel, H., Merz, B. (2010) Flood trends and variability in the Mekong River. Hydrol. Earth Syst. Sci., v.14, pp.407–418.

    Article  Google Scholar 

  • Dobhal, D.P., Gergan, J.T., Thayyen, R.J. (2004) Recession and morphogeometrical changes of Dokriani glacier (1962-1995), Garhwal Himalaya, India. Curr. Sci., v.86, pp.692–696.

    Google Scholar 

  • Doocy, S., Daniels, A., Murray, S., Kirsch, T.D. (2013) The human impact of floods: a historical review of events 1980–2009 and systematic literature review. PLOS Current. Disasters. Edition 1.

  • Farooq, M., Shafique, M., Khattak, M.S. (2018) Flood frequency analysis of river swat using Log Pearson type 3, Generalized Extreme Value, Normal, and Gumbel Max distribution methods. Arabian Jour. Geosci., v.11, 216

    Article  Google Scholar 

  • Gumbel, E.J. (1958) Statistics of extreme values. New York: Columbia University Press.

    Book  Google Scholar 

  • Helsel, D.R., Hirsch, R.M. (2010) Statistical methods in water resources. USGS, Investigations Book 4, Chapter A3, pp. 97–113.

  • Hire, P.S., Patil, A.D. (2018) Flood frequency analysis of the Par River: Western India. Internat. Jour. Scienti. Res. Sci. Tech., v.5, pp.164–168.

    Google Scholar 

  • Hosking, J.R.M., Wallis, J.R. (1997) Regional Frequency Analysis: an Approach Based on L-moments. Cambridge University Press, Cambridge.

    Book  Google Scholar 

  • Ingram, W. (2016) Extreme precipitation: increases all round. Nature Climate Change, v.6 (5), pp. 443–444.

    Article  Google Scholar 

  • Jain, V., Sinha, R. (2003) River systems in the Gangetic plains and their comparison with the Siwaliks: A review. Curr. Sci., v.84, pp.1025–1033.

    Google Scholar 

  • Jha, A.K., Bloch, R., Lamond, J. (2012) Cities and flooding: a guide to integrated flood risk management for the 21st century and a summary for policy makers. Washington DC: The World Bank.

    Book  Google Scholar 

  • Kale, V.S. (2003) Fluvial Geomorphology of Indian Rivers: An Overview. Progress in Physical Geography, v.26, pp.400–433.

    Article  Google Scholar 

  • Kamal, V., Mukherjee, S., Singh, P., Sen, R., Vishwakarma, C.A., Sajadi, P., Asthana, H., Rena, V. (2017) Flood frequency analysis of Ganga River at Haridwar and Garhmukteshwar. Appl. Water Sci., v.7, pp.1979–1986.

    Article  Google Scholar 

  • Khadka, D., Babel, M.S., Shrestha, S., Tripathi, N.K. (2014) Climate change impact on glacier and snow melt and runoff in Tamakoshi basin in the Hindu Kush Himalayan (HKH) region. Jour. Hydrol., v.511, pp.49–60.

    Article  Google Scholar 

  • Khattak, M.S., Anwar, F., Saeed, T.U., Sharif, M., Sheraz, K., Ahmed, A. (2015) Floodplain Mapping Using HEC-RAS and ArcGIS: A Case Study of Kabul River. Arabian Jour. Sci. Eng., v.41, pp.1375–1390.

    Article  Google Scholar 

  • Kochel, R.C. (1988) Geomorphic impact of large floods: review and new perspectives on magnitude and frequency. In: Baker VR, Kochel RC, Patton PC (Eds.), Flood Geomorphology. Wiley, New York, pp.169–187.

    Google Scholar 

  • Kulkarni, A.V., Bahuguna, I.M., Rathore, B.P., Singh, S.K., Randhawa, S.S., Sood, R.K., Dhar, S. (2007) Glacial retreat in Himalaya using Indian remote sensing satellite data. Curr. Sci., v.92, pp.69–74.

    Google Scholar 

  • Kumar, R. (2019) Flood Frequency Analysis of the Rapti River Basin using Log Pearson Type-III and Gumbel Extreme Value-1 Methods. Jour. Geol. Soc. India, v.94, pp.480–484.

    Article  Google Scholar 

  • Kumar, R., Areendran, G., Rao, P. (2009) Witnessing change: glaciers in the Indian Himalayas. WWF-India & BIT, New Delhi.

    Google Scholar 

  • Latt, Z.Z., Wittenberg, H. (2015) Hydrology and flood probability of the monsoon dominated Chindwin river in northern Myanmar. Jour. Water and Climate Change, v.6, pp.144–160.

    Article  Google Scholar 

  • Li, L., Liu, L., Guo, S., Xiang, L. (2015) Optimal design of seasonal flood limited water levels and its application for the Three Gorges Reservoir. Jour. Hydrol., v.527, pp.1045–1053.

    Article  Google Scholar 

  • Millington, N., Das, S., Simonovic, S.P. (2011) The comparison of GEV, Log-Pearson Type 3 and Gumbel distributions in the Upper Thames River watershed under global climate models. Water Resources Research Report Department of Civil and Environmental Engineering, University of Western Ontario, Canada.

    Google Scholar 

  • Mukherjee, R., Bilas, R. (2019) Flood frequency analysis of Ramganga river basin in western Gangetic Plain, India. National Geograp. Jour. India, v.65, pp.286–289.

    Google Scholar 

  • Murtaza, D., Roshnl, T., Himayoun, D. (2022) The investigation of runoff variations and the flood frequency estimates of the Jhelum river, India. Sustainable Water Resources Management, v.8, pp.60.

    Article  Google Scholar 

  • Nainwal, H.C., Negi, B.D.S., Chaudhary, M., Sajwan K.S., Gaurav, A. (2008) Temporal changes in rate of recession: Evidences from Satopanth and Bhagirath Kharak glaciers, Uttarakhand, using Total Station Survey. Curr. Sci., v.94, pp.653–660.

    Google Scholar 

  • Nandargi, S.S., Shelar, A. (2018) Rainfall and flood studies of the Ganga river basin in India. Ann. Geograph. Stud., v.1, pp.34–50.

    Google Scholar 

  • Pandey, H.K., Dwivedi, S., Kumar, K. (2018) Flood Frequency Analysis of Betwa River, Madhya Pradesh India. Jour. Geol. Soc. India, v.92, pp.286–290.

    Article  Google Scholar 

  • Patton, P.C., Baker, V.R. (1976) Morphometry and floods in small drainage basins subject to diverse hydrogeomorphic controls. Water Resour. Res., v.12, pp.941–952.

    Article  Google Scholar 

  • Pawar, U.V., Hire, P.S., Gunjal, R.P., Patil, A.D. (2020) Modeling of magnitude and frequency of floods on the Narmada River: India. Modeling Earth Syst. Environ., v.6, pp.2505–2516.

    Article  Google Scholar 

  • Pearson, K. (1916) On a brief proof of the fundamental formula for testing the goodness of fit of frequency distributions and on the probable error of ‘P’. Philosoph. Mag., v.31, pp.369–378.

    Google Scholar 

  • Rao, A.R., Hamed, H.K. (2000) Flood Frequency Analysis. CRC Press, Boca Raton.

    Google Scholar 

  • Rao, S.R., Dhakate, A.R., Saha, S.K., Mahapatra, S., Chaudhari, H.S., Pokhrel, S., Sahu, S.K. (2012) Why is Indian Ocean warming consistently. Climate Change, v.110, pp.709–719.

    Article  Google Scholar 

  • Ray, K., Pandey, P., Pandey, C., Dimri, A.P., Kishore, K. (2019) On the recent floods in India. Curr. Sci., v.117, pp.204–218.

    Article  Google Scholar 

  • Reddy, P.J.R. (2011) A Textbook of Hydrology. University Science Press, Bangalore.

    Google Scholar 

  • Roxy, M.K., Ritika, K., Terray, P., Murtugudde, R., Ashok, K., Goswami, B.N. (2015) Drying of Indian subcontinent by rapid Indian Ocean warming and a weakening land-sea thermal gradient. Nature Commun., v.6, pp.1–10.

    Article  Google Scholar 

  • Sahoo, A., Ghose, D.K. (2021) Flood frequency analysis for menace gauging station of Mahanadi river, India. Jour. Instit. Engineers (India) Series A, v.102, pp.737–748.

    Article  Google Scholar 

  • Saini, S.S., Kaushik, S.P., Jangra, R. (2016) Flood risk assessment in urban environment by geospatial approach: a case study of Ambala city India. Appl. Geomat., v.8, pp.163–190.

    Article  Google Scholar 

  • Shaw, E.M. (1983) Hydrology in Practice. Van Nostrand Reinhold, UK.

    Google Scholar 

  • Singh, N., Singhal, M., Chhikara, S., Karakoti, I., Chauhan, P., Dobhal, D.P. (2019) Radiation and energy balance dynamics over a rapidly receding glacier in the central Himalaya. Internat. Jour. Climatol., v.40, pp.400–420.

    Article  Google Scholar 

  • Singh, O., Kumar, D. (2019) Evaluating the influence of watershed characteristics on flood vulnerability of Markanda River basin in north west India. Natural Hazards, v.96, pp.247–268.

    Article  Google Scholar 

  • Singh, O., Kumar, M. (2013) Flood events, fatalities and damages in India from 1978 to 2006. Natural Hazards, v.69, pp.1815–1834.

    Article  Google Scholar 

  • Srivastava, D., Kumar, A., Verma, A., Swaroop, S. (2012) Characterization of suspended sediment in Meltwater from Glaciers of Garhwal Himalaya. Hydrol. Process., v.28, pp.969–979.

    Article  Google Scholar 

  • Tabari, H. (2020) Climate change impact on flood and extreme precipitation increases with water availability. Scientific Reports, v.10, pp.137–168.

    Google Scholar 

  • Thayyen, R.J., Gergan, J.T., Dobhal, D.P. (2005) Monsoonal control on glacier discharge and hydrograph characteristics, a case study of Dokriani Glacier, Garhwal Himalaya, India. Jour. Hydrol., v.306, pp.37–49.

    Article  Google Scholar 

  • Umar, S., Lone, M.A., Goel, N.K. (2020) Modeling of peak discharges and frequency analysis of floods on the Jhelum River north-western Himalayas. Modeling Earth Syst. Environ., v.7, pp.1991–2003.

    Article  Google Scholar 

  • Wurbs, R.A., James, W.P. (2009) Water resources engineering. New Delhi, India: PHI Learning Private Ltd.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omvir Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, D., Pandwar, S., Saini, D. et al. Frequency Analysis of Flood Flow in Markanda Basin of Ghaggar River System in North Western India. J Geol Soc India 99, 1015–1024 (2023). https://doi.org/10.1007/s12594-023-2422-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12594-023-2422-x

Navigation