Skip to main content
Log in

Sedimentary Facies and Morpho-dynamics of Sand Spit and Island Inference as Coastal River Process

  • Original Article
  • Published:
Journal of the Geological Society of India

Abstract

This study aimed to characterize the sedimentary facies and understand the morphodynamics of the study area, and their results were correlated with various analytical methods. Different analyses such as depositional environmental, statistical, shoreline change, and grain size illustrated the temporal and spatial distribution of sediments. It has previously been claimed that current research locations are locii to fluvial landforms and are affected by fluvial processes. However, there are currently no rivers in the study region. This study was done to better understand the presence of fluvial landforms and to evaluate the previous findings. The dynamic behavior of the coast was revealed through shoreline analysis, which was done using satellite images from various years. Oceanographic parameters and longshore sediment transport play a vital role in geomorphological changes in coastal zones. According to the grain size analysis results, mean values showed that the deposits predominantlyare medium grained. The outcome discussed the spatiotemporal variations in geomorphology, sedimentation, and the function of coastal and fluvial processes on the beach of an island and a sand spit. Also highlighted was the role that wave action, fluvial currents, and tidal currents had in the long-term evolution of coastal geomorphological features such as spits, beaches, open coasts, and islands. The standard deviation signifies that the sediments are very well sorted to poorly sorted. Skewness ranges from fine skewed to strongly fine skewed and the kurtosis values show that the sediments are predominately very platykurtic which implies a low-energy environment of deposition. Four sedimentary facies (Facies A, B, C, D) have been found and facies A, B, and C may be wave-influenced deposits, but facies D may be formed by fluvial processes and contain medium to sand-sized particles. The direction of the tip area is also pointing to the south and this result concluded that the tip area is continuously growing. Thus, the results of this study revealed that sediment transport and coastal geomorphology evolution may be governed by two main processes such as the present ocean hydrodynamics and paleo fluvial processes of the study regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmad, E. (1972) Coastal Geomorphology of India. Orient Longman, New Delhi, 222 p.

    Google Scholar 

  • Alesheikh, A.A., Ghorbanali, A. and Nouri, N. (2007) Coastline change detection using remote sensing. Internat. Jour. Environ. Sci. Tech., v.4, pp.61–66. doi:https://doi.org/10.1007/BF03325962

    Article  Google Scholar 

  • Anand, M. and Anandan, J. (2000) Islands around Gulf of Mannar. In: Souvenir 2000. Central Marine Fisheries Research Institute, Mandapam, pp.88–91

    Google Scholar 

  • Anthony, E.J. and Hequette, A. (2007) The grain-size characterization of coastal sand from the Somme estuary to Belgium: sediment sorting processes and mixing in a tide and storm-dominated setting. Sediment. Geol., v.202, pp.369–382.

    Article  Google Scholar 

  • Armstrong-Altrin, J.S., Ramos-Vazquez, M.A., Zavala-Leon, A.C., Montiel-Garcia, P.C. (2018) Provenance discrimination between Atasta and Alvarado beach sands, western Gulf of Mexico, Mexico: Constraints from detrital zircon chemistry and U-Pb geochronology. Geol. Jour., v.53(6), pp.2824–2848.

    Article  Google Scholar 

  • Asir, N., Dinesh Kumar, P., Arasamuthu, A., Mathews, G., Diraviya Raj K., Dinesh Kumar, P, Ashok kumar, T.K., Deepak S. Bilgi, Patterson, Edward, J.K. (2020) Eroding islands of Gulf of Mannar, Southeast India: a consequence of long-term impact of coral mining and climate change. Natural Hazards, v.103(1), pp.103–119.

    Article  Google Scholar 

  • Bartholoma, A., Flemming, B.W. (2007) Progressive grain sizes or tingalongan intertidal energy gradient. Sediment. Geol., v.202, pp.464–472.

    Article  Google Scholar 

  • Bastos, L., Bio, A., Pinho, J.L.S., Granja, H., Jorge da Silva, A. (2012) Dynamics of the Douro estuary sand spit before and after breakwater construction. Estuary Coast. Shelf Sci., v.109, pp.53–69. doi:https://doi.org/10.1016/j.ecss.2012.05.017.

    Article  Google Scholar 

  • Blott, S.J. and Pye, K. (2001) Gradistat: A Grain Size Distribution and Statistics Package for the Analysis of Unconsolidated Sediments. Earth Surface Processes and Landforms, v.26, pp.1237–1248. doi:https://doi.org/10.1002/esp.261

    Article  Google Scholar 

  • Boak, E.H. and Turner, I.L. (2005) Shoreline Definition and Detection: A Review. Jour. Coastal Res., v.21(4), pp.688–703.

    Article  Google Scholar 

  • Bramha, S., Sahoo, S.K., Subramanian, V. et al. (2019) Application of multivariate technique to evaluate spatial distribution of natural radionuclides along Tamil Nadu coastline, east coast of India. SN Appl. Sci., v. 1(689). doi:https://doi.org/10.1007/s42452-019-0716-9

  • Bryan, K.R., Kench, P.S., Hart, D.E. (2008) Multi-decadal coastal change in New Zealand: evidence, mechanisms and implications. New Zealand Geographer, v.64, pp.117–128.

    Article  Google Scholar 

  • Chappell, J. (1967) Recognising fossil strand lines from grain-size analysis Sediment. Petrol., v.37(1), pp.157–65.

    Google Scholar 

  • Chaudhri, R.S., Gill, G.T.S. (1981) Heavy Mineral Assemblage of the Siwalik Group of Nepal Himalayas. Jour. Geolog. Soc., v.22, pp.220–226.

    Google Scholar 

  • Dalrymple, R.W., Boyd, R., Zaitlin, B.A. (1992) Estuarine facies models: conceptual basis and stratigraphic implications. Jour. Sediment. Petrol., v.62, pp.1130–1146.

    Article  Google Scholar 

  • Dean, R.G., Liotta, R., Simo, N.G. (1999) Erosional hotspots. Gainesville, Florida: University of Florida Technical Report UFL/ COEL-99/021, 60p.

  • Dietz, V. (1973) Experiments on the influence of transport on shape and roundness of heavy minerals. Contrib. Sedimentol., v.1, pp.103–1225.

    Google Scholar 

  • Duane, D.B. (1964) Significance of Skewness in Recent Sediments, Western Pamlico Sound, North Carolina. Jour. Sediment. Petrol., v.34, pp.864–874.

    Google Scholar 

  • Duarah, B.P., Das, P.K., Goswami, D.C. (1998) Heavy Mineral Study from Modern Sediments of a Point Bar in the Puthimari River near Puthimari Village, Kamrup District, Assam. Jour. Indian Acad. Geosci., v.41, pp.47–52.

    Google Scholar 

  • Fenster, M.S., Dolan, R. (1999) Mapping erosion hazard areas in the city of Virginia Beach. Jour. Coastal Res., Spec. Issue, v.28, pp.58–68.

    Google Scholar 

  • Fiannacca, P., Shaltami, O.R., Fares, F.F. (2017) Mineralogy of Mamuniyat Formation, Idri Area, SW Libya: Implications on paleoclimate, provenance and tectonic setting. European Geosciences Union, General Assembly, Vienna, Austria, Proceeding Book; pp.70–87.

    Google Scholar 

  • Finch, R.J., Hanchar, J.M. (2003) Structure and chemistry of zircon and zircon-group minerals. In: Hanchar, J.M. and Hoskin, P. W.O. (Eds.) Rev. Mineral. Geochem., v.53, pp.1–25.

  • Folk, R.L. (1966) A review of grain-size parameters. Sedimentol., v.6, pp.344–359.

    Article  Google Scholar 

  • Folk, R.L. (1980) Petrology of Sedimentary Rocks. Hemphill Publishing Company, Austin, 184p.

    Google Scholar 

  • Folk, R.L. and Ward, W.C. (1957) A Study in the Significance of Grain-Size Parameters. Jour. Sediment. Petrol., v.27, pp.3–26. doi:https://doi.org/10.1306/74D70646-2B21-11D7-8648000102C1865D.

    Article  Google Scholar 

  • Friedman, G.M. (1961) Distinction between dune, beach, and river sands from their textual characteristics. Jour. Sediment. Res., v.35, pp.643–655.

    Google Scholar 

  • Friedman, G.M. (1965) Terminology of Crystallization Textures and Fabrics in Sedimentary Rocks. Sediment. Petrol., 31, 514–529.

    Google Scholar 

  • Friedman, G.M. (1967) Dynamic processes and statistical parameters compared for size frequency distribution of beach and river sands. Jour. Sediment. Petrol., v.37, pp.327–354.

    Google Scholar 

  • Gallagher, E.L., Wadman, H.M., McNinch, J., Reniers, A.J.H.M., Koktas, M. (2016) A Conceptual Model for Spatial Grain Size Variability on the Surface of and within Beaches. Jour. Marine Sci. Eng., v.4(2), pp.38. doi:https://doi.org/10.3390/jmse4020038.

    Article  Google Scholar 

  • Garzanti, E., Ando, S. (2007) Heavy mineral concentration in modern sands: implications for provenance interpretation. In: Developments in Sedimentology, v.58, pp.517–545.

    Article  Google Scholar 

  • Gowthaman, R., Sanil, K.V., Dwarakish, G.S., Shanas, P.R., Jena, B.K., Singh, J. (2015) Nearshore waves and longshore sediment transport along Rameshwaram Island of the East Coast of India. Internat. Jour. Nav. Archit. Ocean Eng., v.7, pp.939–950. doi:https://doi.org/10.1515/ijnaoe-2015-0065.

    Article  Google Scholar 

  • Hapke, Cheryl, J. and Reid, David, (2007) National Assessment of Shoreline Change, Part 4: Historical Coastal Cliff Retreat Along the California Coast.Marine Sci. Faculty Publ., 2492. https://digitalcommons.usf.edu/msc_facpub/2492

  • Haredy, R.A. (2003) Distribution and Provenance of Heavy Minerals in Surficial Sediments of Minnmurra and Bass Point New South Wales, Australia, Research Thesis, School of Geosciences, University of Wollongong, Wollongong.

    Google Scholar 

  • Harrington, R.F. (1967) Field computation by moment methods, 1st edn. The Macmillan Co., New York

    Google Scholar 

  • Harris, L.E., Samuelson, N., Damon, M. (2003) Correlation between nearshore reef structure and shoreline changes in Indian River County, Florida. Coastal Sediments’ 03 (Seattle, Washington, ASCE).

    Google Scholar 

  • Hedge, A.V., Raveendra, B. (2000) Short-term and long-term geomorphological dynamics of Mangalore spits using IRS-1A/1C data. Jour. Indian Soc. Rem. Sens., v.28, pp.243–247.

    Google Scholar 

  • Hequette, A., Ruz, M.H. (1991) Spit and barrier island migration in the Southeastern Canadian Beaufort Sea. Jour. Coast. Res., v.7(3), pp.677–698.

    Google Scholar 

  • Herrling, G., Winter, C. (2017) Spatiotemporal variability of sedimentology and morphology in the East Frisian barrier island system. Geo-Mar Lett., v.37, pp.137–149. doi:https://doi.org/10.1007/s00367-016-0462-6

    Article  Google Scholar 

  • Herrling, G.; Benninghoff, M.; Zorndt, A.; Winter, C. (2017) Drivers of channel-shoal morphodynamics at the Outer Weser estuary. In: Proc. 8th Internat. Conf. Coastal Dynamics, Helsingoer, Denmark, 12–16 June, 2017.

  • Hill, M.O., Gauch, H.G. (1980) Detrended correspondence analysis: An improved ordination technique. Vegetation, v.42, pp.47–58. doi:https://doi.org/10.1007/BF00048870

    Article  Google Scholar 

  • Honeycutt, M.G., Krantz, D.E. (2003) Influence of the geological framework on spatial variability in long-term shoreline change, Cape Henlopen to Rehoboth Beach, Delaware. Jour. Coast. Res., v.38, pp.147–167.

    Google Scholar 

  • Horikawa, K. and Shen, H.W. (1960) Sand movement by wind action (on the characteristics of sand traps), U.S. Army Corps of Engineers, Beach Erosion Board Technical Memorandum, No 119, 51p.

  • Hubert, A. (1962) The geology of part of southwestern Nigeria. Geol. Surv. Nigeria Bull., v.3, pp.87.

    Google Scholar 

  • Jayaraman, K.S. (2019) Submerged river systems hint at India-Sri Lanka water links. Nature India. doi:https://doi.org/10.1038/nindia.2019.91

  • Kankara, R.S., Selvan C.S., Rajan, B., Arockiaraj, S. (2014) An adaptive approach to monitor the Shoreline changes in ICZM framework: A case study of Chennai coast. Indian Jour. Marine Sci., v.43(7), pp.1271–1279.

    Google Scholar 

  • Kankara, R.S., Ramana Murthy, M.V. and Rajeevan, M. (2018) National Assessment of Shoreline changes along Indian Coast - A status report for 1990–2016, NCCR Publication, available at NCCR web site http://www.nccr.gov.in

  • Kankara, R.S., Arockiaraj, S. and Prabhu, K. (2016) Environmental Sensitivity Mapping and Risk Assessment for oil spill along the Chennai coast in India. Marine Pollut. Bull., v.106(1-2), pp.95–103

    Article  Google Scholar 

  • King, C.A.M. (1970) Changes in the Spit at Gibraltar Point, Lincolnshire, 1951 to 1969. East. Midl. Geol., v.5, pp.19–30. In: Schwartz, M.L. (Ed.), (1972): Spits and Bars. Dowden, Hutchinson & Ross, Stroudsberg, PA, 452p.

    Google Scholar 

  • Komar, P.D. (2007) The entrainment, transport and sorting of heavy minerals by weaves and current. In: Mange, M.A. and Wright, D.T. (Eds.), Heavy Minerals in Use, Developments Sedimentology, Elsevier, Amsterdam. v.58, pp.3–48.

    Chapter  Google Scholar 

  • Kuleli, T., Guneroglu, A., Karsli, F. and Dihkan, M. (2011). Automatic detection of shoreline change on coastal Ramsar wetlands of Turkey. Ocean Engg., v.38, pp.1141–1149.

    Article  Google Scholar 

  • Kumar, A., Narayana, A.C., Jayappa, K.S. (2010) Shoreline changes and morphology of spits along southern Karnataka, west coast of India: a remote sensing and statistics-based approach Geomorphology, v.120(3–4), pp.133–152.

    Article  Google Scholar 

  • Kuttimani R, Raviraj A, Pandian BJ (2017) An overview of water profile in Tamil Nadu. Agriculture Update, v.12, pp.287–295. doi: https://doi.org/10.15740/HAS/AU/12.TECHSEAR(1)2017/287-295.

    Article  Google Scholar 

  • Liu, H., Tajima, Y., Sato, S. (2010) Long-term monitoring on the sand spit morphodynamics at the Tenryu River mouth. In: Smith, J.M., Lynett, P. (Eds.), Proc. 32nd Internat. Conf. Coastal Engineering. Shanghai, China, pp.1–15.

  • Lorenzo, F., Alonso, A., Pages, J.L. (2007) Erosion and accretion of beach and spit systems in Northwest Spain: a response to human activity. Jour. Coastal Res., v.23(4), pp.834–845

    Article  Google Scholar 

  • Loveson, V.J. (1993) Geological and geomorphological investigation related to sea-level variation and heavy mineral accumulation along the southern Tamil Nadu beaches, India. Ph.D. thesis, Madurai Kamaraj Univ., 223p.

  • Loveson, V.J., Rajamanickam, G.V. (1988) Progradation as evidenced around as evidenced around a submerged ancient port, Periapatnam, Tamil Nadu, India. Internat. Jour. Land. Sys. Eclo. Studies, v.12, pp.94–98.

    Google Scholar 

  • Malvarez, G.C., Cooper, J.A.G., Jackson, D.W.T. (2001) Relationships between wave-inûuenced currents and sediment grain-size on a sandy tidal-ûat. Jour. Sediment. Geol., v.71(5), pp.705–712.

    Google Scholar 

  • Markose, V.J., Rajan, B., Kankara, R.S. et al. (2016) Quantitative analysis of temporal variations on shoreline change pattern along Ganjam district, Odisha, east coast of India. Environ. Earth Sci., v.75, 929. doi:https://doi.org/10.1007/s12665-016-5723-1

    Article  Google Scholar 

  • Mason, C.C. and Folk, R.L. (1958) Differentiation of Beach, Dune and Aeolian Flat Environments by Size Analysis, Mustang Island, Texas. Jour. Sediment. Res., v.28, pp.211–226

    Google Scholar 

  • Morton, A.C., Hallsworth, C. (1999) Processes controlling the composition of heavy mineral assemblages in sandstones. Sediment. Geol., v.124(1–4), pp.3–29.

    Article  Google Scholar 

  • Morton, A.C., Hallsworth, C. (2007) Stability of detrital heavy minerals during burial diagenesis. In: Mange, M.A. and Wright, D.T. (Eds.), Heavy Minerals in use. Developments in Sedimentology, v.58, pp.215–245.

  • Nakajo, T. (2004) Geomorphology and sedimentation of microtidal ûat in the Kushida River estuary, Ise Bay, central Japan. Bull. Osaka Mus. Nat. Hist., v.58, pp.69–78.

    Google Scholar 

  • Nayak, S. (2002) Use of satellite data in coastal mapping. Indian Cartographer, v.22, pp.147–156.

    Google Scholar 

  • Nielsen, L.H., Johannessen, P.N. (2001) Accretionary, forced regressive shoreface sands of the Holocene-Recent Skagen Odde spit complex, Denmark - a possible outcrop analogue to fault-attached shoreface sandstone reservoirs. In: O.J. Martinsen and T. Dreyer (Eds.) From Sedimentary Offshore Norway — Palaeozoic to Recent. NPF Spec. Publ., no.10, pp.457–472, Published by Elsevier Science B.V., Amsterdam. © Norwegian Petroleum Society (NPF).

  • Ollerhead, J., Davidson-Arnott, R.G.D. (1995) The evolution of Buctouch Spit, New Brunswick, Canada. Mar. Geol., v.124, pp.215–236.

    Article  Google Scholar 

  • Paarlberg, A.J., Knaapen, M.A.F., de Vries, M.B., Hulscher, S.J.M.H., Wang, Z.B. (2005) Biological inûuences on morphology and bed composition of an intertidal ûat. Estuar. Coast. Shelf Sci., v.64, pp.577–590.

    Article  Google Scholar 

  • Padmalal, D., Ramachandran, K.K., Seralathan, P. (1998) Significance of heavy minerals suits in riverine and estuarine sediments in the southern west coast of India- a case study. Indian Jour. Marine Sci., v.27, pp.185–189.

    Google Scholar 

  • Park, J.Y., Wells, J.T. (2007) Spit growth and downdrift erosion: results of longshore transport modelling and morphologic analysis at the Cape Lookout cuspate foreland. Jour. Coast. Res., v.23(3), pp.553–568.

    Article  Google Scholar 

  • Passega, R. (1977) Significance of C-M diagrams of sediments deposited by suspension. Sedimentol., v.24, pp.723–733

    Article  Google Scholar 

  • Pradhan, U.K., Mishra, P., Mohanty, P.K., Behera, B. (2015) Formation, Growth and Variability of Sand Spit at Rushikulya River Mouth, South Odisha Coast, India. Procedia Eng., v.116, pp.963–970.

    Article  Google Scholar 

  • Rajasekaran, C., Jayakumar, S., Gowthaman, R, Jishad, M., Yadhunath, E.M., Pednekar, P. (2014) Sand spit and shoreline dynamics near Terekhol river mouth, Goa, India. Indian Jour. Geo-Marine Sci., v.43(7).

  • Ramasamy, S.M. (1996) Remote sensing and geomorphic processes modeling along Tamil Nadu coast, India. Internat. Jour. Remote Sens.

  • Ramasamy, S.M. (1991) River Deltas of India. Mem. Geol. Soc. India, no.22, pp.75–89.

  • Ramasamy, S.M. (2002) GIS based animation of Changing Terrain features in Rameswaram Island, Tamil Nadu, During The Last Century, Proc. Indian Natl. Sci. Acad., v.69, pp.251–256.

    Google Scholar 

  • Ramkumar (2000) Recent changes in the Kakinada spit, Godavari delta. Jour. Geol. Soc. India, v.55, pp.183–188.

    Google Scholar 

  • Ramos-Vazquez, M.A., Armstrong-Altrin, J.S. (2019) Sediment chemistry and detrital zircon record in the Bosque and Paseo del Mar coastal areas from the southwestern Gulf of Mexico. Marine and Petrol. Geol., v.110, pp.650–675. https://www.sciencedirect.com/science/article/abs/pii/S0264817219303423.

    Article  Google Scholar 

  • Rao, B.P. (2003) Sediment transport and exchange around Rameswaram Island between Gulf of Mannar and Palk Bay. Ph.D. thesis, University of Berahmpur, Orissa, India, 440p.

    Google Scholar 

  • Reading, H.G., Collinson, J.D. (1996) Clastic coast. In: Reading, H.G. (Ed.), Sedimentary Environments: Processes, Facies and Stratigraphy, 3rd ed. Blackwell Science Ltd, Oxford, pp.154–231.

    Google Scholar 

  • Ridderinkhof, H. (1997) The effect of tidal asymmetries on the net transport of sediments in the Ems Dollard estuary. Jour. Coast. Res., v.25, pp.41–48.

    Google Scholar 

  • Ruggiero, P., Kaminsky, G.M., Gelfenbaum, G. (2003) Linking proxy-based and datum-based shorelines on a high-energy coastline: implications for shoreline change analysis. In: Bynres, M.R., Crowell, M., and Fowler, C. (Eds.), Shoreline Mapping and Change Analysis: Technical Considerations and Management Implications. Jour. Coast. Res., Spec. Issue No. 38, pp.57–82.

  • Sahayam, J.D., Chandrasekar, N., Kumar, S.K. et al. (2010) Distribution of arsenic and mercury in subtropical coastal beachrock, Gulf of Mannar, India. Jour. Earth Syst. Sci., v.119, pp.129–135. doi:https://doi.org/10.1007/s12040-010-0001-1

    Article  Google Scholar 

  • Sahu, B.K. (1983) Multigroup discrimination of Depositional environments using size distribution statistics. Indian Jour. Earth Sci., v.10, pp.20–2.

    Google Scholar 

  • Sahu, B.K. (1964) Depositional Mechanism from the Size Analysis of Elastic Sediments. Jour. Sediment. Petrol., v.34, pp.73–83.

    Google Scholar 

  • Sakho, I., Mesnage, V., Deloffre, J., Lafite, R., Niang, I, Faye, G. (2011) The influence of natural and anthropogenic factors on mangrove dynamics over 60 years: the Somone Estuary, Senegal. Estuarine, Coastal and Shelf Science, v.94, pp.93–101.

    Article  Google Scholar 

  • Samy Y, Abou El-Anwar E (2013) Textural and Mineralogical Characters of the Sand Fraction of Some Quaternary Sediments on Giza-Fayium District, Western side of the Nile Valley, Egypt, Australian Jour. Basic Appl. Sci., v.7, pp.770–779.

    Google Scholar 

  • Selvan, S.C., Kankara R.S., Prabhu, K. (2020) Shoreline change along Kerala, south-west coast of India, using geo-spatial techniques and field measurement. Natural Hazards, v.100, pp.17–38. doi:https://doi.org/10.1007/s11069-019-03790-2

    Article  Google Scholar 

  • Selvan, C.S., Kankara, R.S., Rajan B. (2014) Assessment of shoreline changes along Karnataka coast, India using GIS & Remote sensing techniques. Indian Jour. Marine Sci., v.43(7), pp.1293–1298.

    Google Scholar 

  • Simeoni, U., Fontolan, G., Tessari, U., Corbau, C. (2007) Domains of spit evolution in the Goro area, Po Delta, Italy. Geomorphology, v.86, pp.332–348.

    Article  Google Scholar 

  • Spencer, D.W. (1963) The interpretation of grain-size distribution curves of clastic sediments: Jour. Sediment. Petrol., v.33(1), pp.180–190

    Google Scholar 

  • Stockdon, H.F., Sallenger, A.H., List, J.H., Holman, R.A. (2002) Estimation of shoreline position and change using airborne topographic lidar data. Jour. Coastal Res., v.18(3), pp.502–513.

    Google Scholar 

  • Suursaar, U., Jaagus, J., Kont, A., Rivis, R., Tonisson, H. (2008) Field observations on hydrodynamic and coastal geomorphic processes off Harilaid Peninsula (Baltic Sea) in winter and spring 2006–2007. Estuarine, Coastal and Shelf Science, v.80, pp.31–41.

    Article  Google Scholar 

  • Swift, D.J.P., Parsons, B.S., Foyle, A. (2003) Between beds and sequences: stratigraphic organization at intermediate scales in the Quaternary of the Virginia coast, USA. Sedimentol., v.50, pp.81–111.

    Article  Google Scholar 

  • Thanikachalam, M. and Ramachandran, S. (2003). Shoreline and Coral Reef Ecosystem changes in Gulf of Mannar, Southeast coast of India. Jour. Indian Soc. Rem. Sens., v.31(3), pp.157–172.

    Article  Google Scholar 

  • Thanikachalam, M., Kumarasen V.A., Ramachandran, S. (2009) Monitoring Coastal and Seafloor Changes in the Gulf of Mannar, Southeast Coast of India Using Remote Sensing and GIS Technology. Geospatial World

  • Thiel, G.A. (1945) Mechanical effects of stream transportation in mineral grains of sand size. Bull. Geol. Soc. Amer., v.56, pp.1207.

    Google Scholar 

  • Thieler, E.R., himmelstoss, E.A., Zichichi, J.L. and Ergul, A. (2009) The Digital Shoreline Analysis System (DSAS) Version 4.0—An ArcGIS Extension for Calculating Shoreline Change. Open-File Report, US Geological Survey Report No. 2008–1278. http://woodshole.er.usgs.gov/projectpages/dsas/version4/

  • Tricart, C.A.M. (1967) Formes littorales tropicales (extrêmite Wde l’I. Sevilla, Chiriqui, Panama). Photo-Interpretation, v.2, pp.34–47. In: Schwartz, M.L. (Ed.) (1972): Spits and Bars. Dowden, Hutchinson & Ross, Stroudsberg, PA, 452p.

    Google Scholar 

  • Valia, H.S, and Cameron, B. (1977) Skewness as paleoenvironmental indicators. Jour. Sediment. Petrol., v.4, pp.784–793.

    Google Scholar 

  • Vaz, G.G., Hariprasad, M., Rao, B. R., Subba Rao, V. (2007) Subsidence of southern part of erstwhile Dhanushkodi township, Tamil Nadu–evidences from bathymetry, side scan and underwater videography. Curr. Sci., v.92(5), pp.671–675.

    Google Scholar 

  • Widdows, J., Brinsley, M. (2002) Impact of biotic and abiotic processes on sediment dynamics and the consequences to the structure and functioning of the intertidal zone. Jour. Sea Res., v.48, pp.143–156.

    Article  Google Scholar 

  • Wood, R.G., Black, K.S., Jago, C.F. (1998) Measurements and Preliminary Modelling of Current Velocity Over an Intertidal Mudûat, Humber Estuary, UK. Geol. Soc. London, Spec. Publ., v.139, pp.167–175.

    Article  Google Scholar 

  • Xie, D., Gao, S., Wang, Y.P. (2008) Morphodynamic modelling of open-sea tidal channels eroded into a sandy seabed, with reference to the channel systems on the China coast. Geo-Mar. Lett., v.28, pp.255. doi:https://doi.org/10.1007/s00367-008-0106-6

    Article  Google Scholar 

  • Yamashita, S., Nakajo, T., Naruse, H., & Sato, T. (2009). The three-dimensional distribution of sedimentary facies and characteristics of sediment grain-size distribution in a sandy tidal flat along the Kushida River estuary, Ise Bay, central Japan. Sediment. Geol., v.215(1–4), pp.70–82. doi:https://doi.org/10.1016/j.sedgeo.2009.01.002

    Article  Google Scholar 

  • Yang, B.C., Darlymple, R.W., Chun, S.S. (2005) Sedimentation on a wave-dominant, open-coast tidal ûat, south-western Korea: summer tidal ûat–winter shoreface. Sedimentology, v.52(2), pp.235–252.

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the Secretary, Ministry of Earth Sciences, Government of India, and the Director NCCR for their support and encouragement for this work and also thank the anonymous reviewer for their constructive comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Sathish.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sathish, S., Kankara, R.S., Selvan, S.C. et al. Sedimentary Facies and Morpho-dynamics of Sand Spit and Island Inference as Coastal River Process. J Geol Soc India 99, 951–964 (2023). https://doi.org/10.1007/s12594-023-2416-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12594-023-2416-8

Navigation