Skip to main content
Log in

Petro-geochemical Signatures as Evidences for Tectonic Setting, Palaeoweathering and Provenance of Eocene Kopili Sandstones, Meghalaya, Northeast India

  • Original Article
  • Published:
Journal of the Geological Society of India

Abstract

Spectacularly preserved yet least studied middle to late Eocene Kopili Formation in parts of East Jaintia Hills district, Meghalaya has been documented to understand the provenance, tectonic setting and palaeoweathering employing petrological and geochemical attributes. The Kopili Formation is characterized by alternations of fossiliferous marl-splintery grey to black shale-siltstone and fine to medium grained ferruginous sandstone with occasional coal streaks. Petrographically, Kopili sandstone has been grouped into two categories i.e. subarkose and sublitharenite. Geochemically, Kopili sandstone possesses high SiO2 and relatively low Al2O3 and Fe2O3 confirming to the modal composition Q72.70 F6.57 RF7.01 CT3.12 Mx2.28 M2.07 HM1.82. These are quartz-rich (SiO2 75.96%) clean sandstone depicting strong negative correlation of SiO2 with rest of the major oxide except for CaO which is relatively weak. High SiO2 is in conformity with quartz enrichment (73.50%), does indicate a passive (atlantic type) continental margin set up for the deposition of Kopili Formation. Neo-development of quartz and feldspar in parts reflect high degree of diagenesis. Chemical indices like CIA, CIW, PIA and ICV reveal intense weathering under semi-arid to semi-humid climatic conditions. Besides minor contributions from continent interior, sediments were largely derived from recycled orogen involving rhyolitic / granitic sources containing plagioclase feldspars in the range of An0-An70 as evident from geochemical attributes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ali, S., Phartiyal, B., Taloor, A., Arif, M. and Singh, B. P. (2021) Provenance, weathering, and paleoclimatic records of the Pliocene-Pleistocene sequences of the Himalayan foreland basin, NW Himalaya, Arab. Jour. Geosci., v.14(198), p.14

    Google Scholar 

  • Anani, C., Moradey, M., Atta, D. P., Kutu, J., Asiedu, D. and Boamah, D. (2013) Geochemistry and provenance of sandstone from Anyaboni and surrounding areas in the voltaian basin, Ghana. Internat. Res. Jour. Geol. and Min. (IRJGM) (2276-6618), v.3(6), pp.206–212.

    Google Scholar 

  • Armstrong-Altrin, J. S., Lee, Y. I., Verma, S. P. and Ramasamy, S. (2004) Geochemistry of sandstones from the Upper Miocene Kudankulam Formation, southern India: Implications for provenance, weathering and tectonic setting. Jour. Sediment. Res., v.74(2), pp.285–297.

    Article  Google Scholar 

  • Armstrong-Altrin, J.S., Nagarajanm R., Lee, Y. I., Kasper-Zubillag, J.J. and Cordoba-Saldana, P.L. (2014) Geochemistry of sands along the San Nicolas and San Carlos beaches, Gulf of California, Mexico: Implication for provenance. Turkish Jour. Earth Syst. Sci., v.23, pp.533–558.

    Article  Google Scholar 

  • Barshad, I. (1966) The effect of a variation in precipitation on the nature of clay mineral formation in soils from acid and basic igneous rocks. Proc. Intl. Clay Conf. pp.167–173

  • Baruah, M., Pandey, N. and Chiezou, K. (2021) Petrographic and geochemical attributes of Oligocene Barail sandstones in parts of Cachar Fold Belt, Northeast India. Jour. Earth Syst. Sci., v.130–133, 17p.

  • Basu, A., Young, S.W., Suttner, L.J., James, W.C. and Mack, G. H. (1975) Reevaluation of the use of undulatory extinction and polycrystallinity in detrital quartz provenance interpretation. Jour. Sediment. Petrol., v.45, pp.873–882.

    Google Scholar 

  • Bhatia, M.R. and Crook, K.A.W. (1986) Trace element characteristics of greywackes and tectonic setting discrimination of sedimentary basins. Contrib. Mineral. Petrol., v.92 pp.181–193.

    Article  Google Scholar 

  • Blatt, H., Middleton, G. and Murray, R. (1980) Origin of sedimentary rock. Prentice-Hall, 2nd ed., 782p.

  • Chaudhuri, A., Banerjee, S. and Chauhan, G. (2020) Compositional evolution of siliciclastic sediments recording the tectonic stability of a pericratonic rift: Mesozoic Kutch Basin, western India. Mar. Petrol. Geol., v. 111, pp.476–495

    Article  Google Scholar 

  • Chaudhuri, A., Banerjee, S. and Pera, E. L. (2018) Petrography of Middle Jurassic to Early Cretaceous sandstones in the Kutch Basin, western India: Implications on provenance and basin evolution. Jour. Palaeogeogr. v.72(2), 14 p.

  • Clift, P. D., Hodges, K. V., Heslop, D., Hannigan, R., Long, H. V. and Claves, G. (2008) Correlation of Himalayan exhumation rates and Asian monsoon intensity. Nature Geosci., v. 1(12), pp.875–880. doi:https://doi.org/10.1038/ngeo351

    Article  Google Scholar 

  • Conolly, J.R. (1965) The occurrence of polycrystallinity and undulatory extinction in quartz in sandstone. Jour. Sediment. Petrol., v.35, pp.116–135.

    Google Scholar 

  • Cox, R., Lowe, D.R. and Cullers, R.L. (1995) The influence of sediment recycling and basement composition on evolution of mudrock chemistry in the southwestern United States. Geochim. Cosmochim. Acta, v.59, pp.2919–2940.

    Article  Google Scholar 

  • Crook, K.A.W. (1974) Lithogenesis and geotectonics: the significance of compositional variation in flyscharenites (graywackes). Soc. Econ. Geol. and Paleo. Min., Spec. Publ., v.19, pp.304–310.

    Google Scholar 

  • Devi, N. R. Singh, Y. R., Abbott, M. B. and Devi, A. B. (2021) Palynology, Palynofacies And Organic Geochemistry Analysis of The Late Eocene Shale From Meghalaya, Northeast India. Jour. Earth Syst. Sci., v.130 (590), 16p.

  • Devi, S.R., Mondal, M.E.A. and Armstrong-Altrin, J.S., (2017) Geochemistry and the Factors Controlling on the Weathering and Erosion of the Barail Group of Rocks, NW Manipur, India. Jour. Ind. Assoc. Sedimentol., v.34, pp.9–16

    Google Scholar 

  • Dickinson, W. R. (1970) Interpreting detrital modes of greywacke and arkose. Jour. Sedi. Petrol., v.40(2), pp.695–707.

    Google Scholar 

  • Dickinson, W.R. (1985) Interpreting provenance relations from detrital modes of sandstones; In: Provenance of Arenites; NATO ASI Series (Series C: Math. and Phy. Sci.), Springer, Dordrecht, v.148, pp.333–361.

    Google Scholar 

  • Dickinson, W.R. and Suczek, C.A. (1979). Plate tectonics and sandstone composition. AAPG Bull., v.63 pp.2164–2182.

    Google Scholar 

  • Dickinson, W.R., Beard, L.S., Brakenridge, G.R., Erjavec, J.L., Fergusion, R.C., Inman, K.F., Knepp, R.A., and Ryberg, P.T. (1983) Provenance of North American Phanerozoic sandstones in relation to tectonic setting. Geol. Soc. Amer. Bull., v.94, pp.222–235.

    Article  Google Scholar 

  • Ekosse, G. (2001) Provenance of the Kgwakgwe kaolin deposit in south eastern Bostwana and its possible utilization. App. Clay Sci., v.20, pp.137–152.

    Article  Google Scholar 

  • Evans, P. (1932) Tertiary succession in Assam. Trans. Min. Geol. Inst. India, v,27, pp. 155–260.

    Google Scholar 

  • Fedo, C.M., Nesbitt, H.W. and Young, G.M. (1995) Unraveling the efects of potassium metasomatism in sedimentary rock sand paleosols, with implications for paleoweathering conditions and provenance. Geology, v.23 pp. 921–924.

    Article  Google Scholar 

  • Floyd, P.A., and Leveridge, B.E. (1987) Tectonic environment of the devonian Gramscatho Basin South Cornwall: Framework mode and geochemical evidence from turbiditic sandstones. Jour. Geol. Soc. London, v.144, pp.531–542.

    Article  Google Scholar 

  • Gazi, M.Y., Kabir, S.M., Imam, M.B., Rahman, A. and Islam, M. A. (2017) Geochemistry of Neogene Mudrocks from Sitakund Anticline, Bengal Basin: Implicationsfor Provenance, Weathering, Tectonic Setting and Depositional Environment. Jour. Geosci. Environ. Protec., v.5 pp.147–171.

    Google Scholar 

  • Ghosh, S., Sarkar, S., and Ghosh, P. (2012) Petrography and major element geochemistry of the Permo-Triassic sandstones, central India: Implications for provenance in an intracratonic pull-apart basin. Jour. Asian Earth Sci., v.43 pp.207–240

    Article  Google Scholar 

  • Gogoi, M., Sarmah, R.Kr., Goswami, T.Kr., Mahanta, B. N., Laishram, R., Saikia, H., Oza, B. (2021) Petrography, clay mineralogy and geochemistry of Lower Gondwana sandstones of Western Arunachal Pradesh Himalayas, India. Jour. Sediment. Environ., v.6(2), 23 p.

    Google Scholar 

  • Harnois, L. (1988) The CIW index: A new chemical index of weathering. Sediment. Geol. v.55 pp.319–322.

    Article  Google Scholar 

  • Hauhnar, M., Lalnunmawia, J. And Orizen, M. (2021) Geochemistry of Barail sandstone in Champhai, Mizoram: Implications on provenance and weathering history. Jour. Earth Syst. Sci., v.130–27, 19p.

  • Jahan, S. Uddin, A. Pashin, J. C. and Savrda, C. E. (2017) Petroleum source-rock evaluation of upper Eocene Kopili Shale, Bengal Basin, Bangladesh; Inter. Jour. Coal Geol., v.172, pp.71–79.

    Article  Google Scholar 

  • Johnson, S. Y. and Alam, A. M. N. 199 Sedimentation and tectonics of the Sylhet trough, Bangladesh. Geol. Soc. Amer. Bull., v.103 pp.1513–1527.

  • Kanhaiya, S., Singh, B.P. and Singh, S. (2018) Mineralogical and Geochemical Behavior of Sediments Solely Derived from Bundelkhand Granitic Complex, Central India: Implications to Provenance and Source Rock Weathering, Geochem. Inter., v.56(12), pp.1245–1262.

    Google Scholar 

  • Kanhaiya, S., Singh, B. P., Singh, S., Mittal, P. and Srivastava, V. K. (2019) Morphometric analysis, bedload sediments, and weathering intensity in the Khurar River Basin, central India. Geol. Jour., v.54, pp.466–481.

    Article  Google Scholar 

  • Kumar, R., Naik, G.C., Kanungo, U.S., Gandhi, D., Banerjee, A.N. Baruah, R.M. and Deb, A. (2004) Sequence Stratigraphy and depositional systems for mid - to late Eocene Kopili alloformation, Assam Shelf, Northeastern India; 5th Con. & Expo. on Petro. Geophy. Hyderabad, India, pp. 431–439

  • Long, X., Yuan, C., Sun, M., Safonova, I., Xiao, W. and Wang, Y. (2012) Geochemistry and U–Pb detrital zircon dating of Paleozoic graywackes in East Junggar, NW China: Insights into subduction–accretion processes in the southern Central Asian Orogenic Belt. Gondwana Res., v.21 pp.637–653.

    Article  Google Scholar 

  • Moulik, R. S. K., Singh, H. J., Singh, R. K., Akhtar, S. M., Mayor, S. and Asthana, M. (2009) Sand Distribution Pattern and Depositional Model of Kopili Formation (Eocene) with Special Reference to Sequence Stratigraphic Framework from North Assam Shelf, Assam-Arakan Basin, India; Search and Discovery Article 50196, AAPG Annual Convention, Colorado.

  • Nesbitt, H. W. and Young, G. M. (1984) Prediction of some weathering trend of plutonic and volcanic rocks based on thermodynamic and Kinetic consideration. Geochim. Cosmochim. Acta, v.48 pp.1523–1534.

    Article  Google Scholar 

  • Nesbitt, H.W. and Young, G. M. (1982) Early proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature, v.299 pp.715–717

    Article  Google Scholar 

  • Nesbitt, H. W., Young, G. M., McLennan, S. M. and Keays, R. R. (1996) Effect of geochemical weathering and sorting on the petrogenesis of siliciclastic sediments, with implications for provenance studies. Jour. Geol., v.104, pp.525–542.

    Article  Google Scholar 

  • Patra, A. and Shukla, A.D. (2020) Geochemical signatures of Late Paleocene sandstones from the Sanu Formation, Jaisalmer basin, western India: Implication for provenance, weathering and tectonic setting. Jour. Earth Syst. Sci., v.129 (81), 12 p.

  • Patra, A., Singh, B.P. and Srivastava, V.K. (2014) Provenance of the Late Paleocene Sandstones of the Jaisalmer Basin, Western India, Jour. Geol. Soc. India, v.83, pp.657–664

    Article  Google Scholar 

  • Pettijohn, F.J., Potter, P.E. and Siever, R. (1972) Sand and Sandstones; SpringerVerlag, New York, 241p.

    Google Scholar 

  • Roser, B.P, and Korsch, R.J. (1988) Provenance signatures of sandstone mudstone suites determined using discriminant function analysis of major element data. Chem. Geol., v.67 pp.119–139.

    Article  Google Scholar 

  • Roser, B.P. and Korsch, R.J. (1985) Plate tectonics and geochemical composition of sandstones: a discussion. Jour. Geol., v.93 pp.81–84.

    Article  Google Scholar 

  • Roser, B.P. and Korsch, R.J. (1986) Determination of tectonic setting of sandstone-mudstone suites using SiO2 content and K2O/Na2O ratio. Jour. Geol. v.94 pp.635–650.

    Article  Google Scholar 

  • Samanta, B. K. (1968) Nummulites (foraminifera) from the Upper Eocene Kopili Formation of Assam, India. Paleontol., v.11, pp.669–682.

    Google Scholar 

  • Samanta, B.K. (1985) Pellatispira (Foraminiferida) from the Upper Eocene Kopili Formation of Garo Hills, Meghalaya; Jour. Geol. Soc. India, v.26, pp.199–207

    Google Scholar 

  • Saxena, R.K. and Trivedi, G.K. (2009) Palynological investigation of the Kopili Formation (Late Eocene) in North Cachar Hills, Assam, India. Acta Palaeobot., v.9(2), pp.253–277

    Google Scholar 

  • Schwab, F. L. (1986) Sedimentary signatures of foreland basin assemblages: Real or counterfeit? In: Allen, P.A. and Homewood, P., (Eds.), Foreland Basins. Internat. Assoc. Sedi.ment., Spec. Publ., v.8 pp.395–410.

  • Shao, J., Yang, S. and Li, C. (2012) Chemical indices (CIA and WIP) as proxies for integrated chemical weathering in China: Inferences from analysis of Cuvial sediments. Jour. Sedi. Geol., v.265–266, pp.110–120.

    Article  Google Scholar 

  • Singh, B. P. (2013) Evolution of the Paleogene succession of the western Himalayan foreland basin. Geosci. Front. v.4, pp.199–212

    Article  Google Scholar 

  • Somasekhar, V., Ramanaiah, S., and Sarma, D. S. (2018) Geochemical characterization of the siliciclastic rocks Chitravati Group, Cuddapah Supergroup: Implications for provenance and depositional environment. Jour. Earth Syst. Sci., v. 127, 54p.

  • Srivastava, S. K. and Pandey, N. (2004) Tectono-sedimentary evolution of Disang-Barail Transition, North West of Kohima, Nagaland India. Him. Geol., v.25(2), pp.121–128.

    Google Scholar 

  • Srivastava, V.K., Singh, B.P. and Patra, A. (2018) Provenance of the Late Paleocene Matanomadh Sandstones, Kachchh, Western India; Society of Earth Scientists Series; Springer Intern. Pub. AG, part of Springer Nature, pp.167–186

  • Suttner, L.J. and Dutta, P.K. (1986) Alluvial sandstone composition and palaeo-climate; I. Framework mineral. Jour. Sediment. Petrol., v.56 pp.329–345.

    Google Scholar 

  • Taylor, S.R. and McLennan, S.M. (1985) The continental crust: Its composition and evolution; Blackwell Scientific, Oxford, 312p.

    Google Scholar 

  • Uddin, A., Kumar, P. & Sarma, J. N. (2007) Early Orogenic History of the Eastern Himalayas: Compositional Studies of Paleogene Sandstones from Assam, Northeast India, Inter. Geol. Rev., v.49(9), pp.798–810.

    Article  Google Scholar 

  • Verma, S.P. and Armstrong-Altrin, J. S., (2013) New multi-dimensional diagrams for tectonic discrimination of siliciclastic sediments and their application to Precambrian basin. Chem. Geol., v.355 pp.117–133.

    Article  Google Scholar 

  • Wandrey, C.J. (2004) Sylhet-Kopili/Barail-Tipam composite total petroleum system, Assam Geologic Province, India. USGS Bull. 2208-D 25p.

  • Wang, W. and Zhou, M.F. (2013) Petrological and geochemical constraints on provenance, paleoweathering, and tectonic setting of the Neoproterozoic sedimentary basin in the eastern Jiangnan Orogen, South China. Jour. Sediment. Res., v.83, pp.975–994.

    Google Scholar 

  • Weaver, C.E. (1989) Clays, Muds and Shales; Dev. in Sediment., v. 44 pp.1–5.

    Google Scholar 

  • Worden, R.H. and Burley, S. D. (2003) Sandstone diagenesis: the evolution of sand to stone; Intern. Assoc. Sedimentol.

  • Yin, A., Dubey, C.S., Webb, A.A.G., Kelty, T.K., Grove, M., Gehrels, G.E. and Burgess, W.P., (2010) Geological correlation of the Himalayan orogen and Indian craton. Part 1. Structural geology, U–Pb zircon geochronology, and tectonic evolution of the Shillong Plateau and its neighboring regions in NE India; Geol. Soc. Amer. Bull., v.122 pp.336–359.

    Google Scholar 

  • Zaidi, S. and Chakrabarti, S. K. (2006) Sequence stratigraphy and depositional environment of the Kopili Formation in the area between Borholla and Khoraghat, Dhansiri Valley, South Assam Shelf; Proc. 6th Inter. Conf. and Expo. on Petrol. Geophys. Kolkata, pp. 652–661

Download references

Acknowledgements

Authors gratefully acknowledge the help and support extended by the Director, National Geophysical Research Institute (NGRI), Hyderabad during the course of geochemical analysis. Authors are also thankful to the Head, Department of Earth Science, Assam University, Silchar for the permission to use microscopic facilities besides other infrastructural supports. Last but not the least; our thanks are also due to reviewers for their constructive suggestions in improving the quality of manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mouchumi Boruah.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boruah, M., Pandey, N. Petro-geochemical Signatures as Evidences for Tectonic Setting, Palaeoweathering and Provenance of Eocene Kopili Sandstones, Meghalaya, Northeast India. J Geol Soc India 99, 929–940 (2023). https://doi.org/10.1007/s12594-023-2414-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12594-023-2414-x

Navigation