Skip to main content
Log in

Petrological and Geochemical Characterization of Miocene Tipam Sandstone in Parts of Cachar Fold Belt, Northeast India

  • Original Article
  • Published:
Journal of the Geological Society of India

Abstract

Miocene Tipam Sandstone Formation in parts of Cachar Fold Belt, Northeast India has been studied using petrographic and geochemical attributes to investigate the composition, paleoweathering, tectonic setting, and source rock characteristics. It comprises of coarse to medium grained false-bedded multistoried ferruginous sandstone and variegated sandy clay. Petrographically, these sandstones belong to sub-lithic and lithic arenite varieties possessing an average recalculated modal composition of Q67F13R20. Geochemically, Tipam sandstones have high SiO2, more Na2O than K2O, and relatively low Fe2O3, MgO, MnO content in accordance with the modal composition. Weathering indices like CIA, CIW, PIA and ICV suggest derivation of sediments from low to moderately weathered source terrain bearing plagioclase feldspar in the range of An10–An55 comparable to granodiorite and granite composition. Dominantly a passive margin setup with high degree of sediment recycling has been envisaged during the deposition of Tipam Sandstone Formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Absar, N., Nizamudheen, B.M. and Augustine, S. (2016a) Petrography, clay mineralogy and geochemistry of clastic sediments of Proterozoic Bhima Group, Eastern Dharwar Craton, India: Implications for provenance and tectonic setting. Jour. Appl. Geochem., v.18(3), pp.237–250.

    Google Scholar 

  • Absar, N., Raza, M., Roy, M., Naqvi, S.M. and Roy, A.K. (2009) Composition and weathering conditions of Paleoproterozoic upper crust of Bundelkhand craton, Central India: Records from geochemistry of clastic sediments of 1.9 Ga Gwalior Group. Precambrian Res., v.168, pp.313–329.

    Article  Google Scholar 

  • Absar, N. and Sreenivas, B. (2015) Petrology and geochemistry of greywackes of the ≤1.6 Ga middle Aravalli Supergroup, northwest India: evidence for active margin processes. Int. Geol. Rev., v.57, pp.134–158.

    Article  Google Scholar 

  • Al-Habri, O. A. and Khan, M. M. (2008) Provenance, diagenesis, tectonic setting and geochemistry of Tawil sandstone (Lower Devonian) in central Saudi Arabia. Jour. Asian Earth Sci., v.33, pp.278–287.

    Article  Google Scholar 

  • Ali, S., Phartiyal, B., Taloor, A., Arif, M. and Singh, B. P. (2021) Provenance, weathering, and paleoclimatic records of the Pliocene-Pleistocene sequences of the Himalayan foreland basin, NW Himalaya. Arab. Jour. Geosci., v.14, pp.198.

    Article  Google Scholar 

  • Angelier, J. and Baruah, S. (2009) Seismotectonics in North-East India: a stress analysis of focal mechanism solutions of earthquakes and its kinematic implications. Geophys. Jour. Internat., v.178, pp.303–326.

    Article  Google Scholar 

  • Armstrong–Altrin, J. S., Lee, Y. I., Verma, S. P. and Ramasamy, S. (2004) Geochemistry of sandstones from the Upper Miocene Kudankulam Formation, southern India: Implications for provenance, weathering and tectonic setting; Jour. Sedim. Res., v. 74(2), pp.285–297.

    Article  Google Scholar 

  • Baruah, M. and Pandey, N. (2019) Lithofacies, architectural elements and tectonic provenance of Mio–Pliocene Dupitila Formation in the Cachar Thrust Fold Belt, Northeast India. SN Appli. Sci., v. 1(3), 274, pp.1–16.

    Google Scholar 

  • Baruah, M., Pandey, N. and Cheizou, K. (2021) Petrographic and geochemical attributes of Oligocene Barail sandstones in parts of Cachar Fold Belt, northeast India. Jour. Earth Syst. Sci., v. 130(133), pp.1–17.

    Google Scholar 

  • Bhatia, M. R. (1983) Plate Tectonics and Geochemical Composition of Sandstone. Jour. Geol., v.91, pp.611–627.

    Article  Google Scholar 

  • Bhatia, M.R. and Crook, K.A.W. (1986) Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins. Contrib. Mineral. Petrol., v.92, pp.181–193.

    Article  Google Scholar 

  • Boles, J. R. (1982) Active albitization of plagioclase, Gulf coast Tertiary. Amer. Jour. Sci., v.282, pp.165–180.

    Article  Google Scholar 

  • Brahma, J., Sircar, A. and Karmakar, G. P. (2013) Hydrocarbon prospectivity in central part of Tripura, India, Using an integrated approach. Jour. Geogra. and Geol., v.5(3), pp.116–134.

    Google Scholar 

  • Chakrabarti, G., Shome, D., Bauluz, B. and Sinha, S. (2009) Provenance and weathering history of Mesoproterozoic clastic sedimentary rocks from the Basal Gulcheru Formation, Cuddapah Basin, India. Jour. Geol. Soc. India, v.74, pp.119–130.

    Article  Google Scholar 

  • Chaudhuri, A., Banerjee, S. and Chauhan, G. (2020) Compositional evolution of siliciclastic sediments recording the tectonic stability of a pericratonic rift: Mesozoic Kutch Basin, western India. Mari. Petrol. Geol., v.111, pp.476–495.

    Article  Google Scholar 

  • Cingolani, C.A., Manassero, M. and Abre, P. (2003) Composition, provenance, and tectonic setting of Ordovician siliciclastic rocks in the San Rafael block: Southern extension of the Precordillera crustal fragment, Argentina. Jour. South Amer. Earth Sci., v.16(1), pp.91–106.

    Article  Google Scholar 

  • Condie, K. C. (1993) Chemical composition and evolution of upper continental crust: Contrasting results from surface samples and shales. Chem. Geol., v.104, pp.1–37.

    Article  Google Scholar 

  • Conolly, J. R. (1965) The occurrence of polycrystallinity and undulatory extinction in quartz in sandstone. Jour. Sediment. Petrol., v.35, pp.116–135.

    Google Scholar 

  • Cox, R., Lowe, D. R. and Cullers, R. L. (1995) The influence of sediment recycling and basement composition on evolution of mudrock chemistry in the southwestern United States. Geochim. Cosmochim. Acta, v.59, pp.2919–2940.

    Article  Google Scholar 

  • Crook, K.A.W. (1974) Lithogenesis and geotectonics: the significance of compositional variation in flysch arenites (graywackes). Soc. Eco. Paleonto. and Mineral., Spl. Publ., v.19, pp.304–310.

    Google Scholar 

  • Cullers, R.L. (2000) The geochemistry of shales, siltstones and sandstones of Pennsylvanian–Permian age, Colorado, USA: implications for provenance and metamorphic studies. Lithos, v.51, pp.181–203.

    Article  Google Scholar 

  • Dickinson, W. R., Ojakangas, R. W. and Stewart R. J. (1969) Burial metamorphism of the late Mesozoic Great Valley sequence, Cache Creek, California. Geol. Soc. Amer. Bull., v.80, pp.519–526.

    Article  Google Scholar 

  • Dickinson, W. R. (1970) Interpreting detrital modes of graywacke and arkose; Jour. Sediment. Petrol., v.40, pp.695–707.

    Google Scholar 

  • Dickinson, W. R. and Suczek, C. A. (1979) Plate tectonics and sandstone composition. Bull. Amer. Assoc. Petrol. Geol., v.63, pp.2164–2182.

    Google Scholar 

  • Dickinson, W. R., Beard, L. S., Brakenridge, G. R., Erjavek, J. L., Ferguson, R. C., Inman, K. F., Knepp, R. A., Lindberg, F. A. and Ryberg, P. T. (1983) Provenance of North American Phanerozoic sandstones in relation to tectonic setting. Geol. Soc. Amer. Bull., v.94, pp.222–235.

    Article  Google Scholar 

  • Dickinson, W. R. (1985) Interpreting provenance relations from detrital modes of sandstones; In: Provenance of Arenites, NATO ASI Series (Series C: Mathematical and Physical Sciences), Springer, Dordrecht, v.148, pp.333–361.

    Google Scholar 

  • Dostal, J., & Keppie, J. D. (2009) Geochemistry of low-grade clastic rocks in the Acatlán Complex of southern Mexico: Evidence for local provenance in felsic-intermediate igneous rocks. Sediment. Geol., v.222, pp.241–253.

    Article  Google Scholar 

  • Etemad-Saeed, N., Hosseini-Barzi, M. and Armstrong-Altrin, J. S. (2011) Petrography and geochemistry of clastic sedimentary rocks as evidence for provenance of the Lower Cambrian Lalun Formation, Posht-ebadam block, Central Iran. Jour. African Earth Sci., v.61, pp.142–159.

    Article  Google Scholar 

  • Fedo, C. M., Nesbitt, H. W. and Young, G. M. (1995) Unravelling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance. Jour. Geol., v.23, pp.921–924.

    Google Scholar 

  • Garzanti, E. and Resentini, A. (2016) Provenance control on chemical indices of weathering (Taiwan river sands). Sediment. Geol., v.336, pp.81–95.

    Article  Google Scholar 

  • Garzanti, E., Wang, J.G., Vezzoli, G. and Limonta, M. (2016) Tracing provenance and sediment fuxes in the Irrawaddy River basin (Myanmar). Chem. Geol., v.440, pp.73–90.

    Article  Google Scholar 

  • Harnois, L. (1988) The CIW index: A new chemical index of weathering. Sediment. Geol., v.55, pp.319–322.

    Article  Google Scholar 

  • Herron, M. M. (1988) Geochemical classification of terrigenous sands and shales from core or log data. Jour. Sediment. Res., v.58, pp.820–829.

    Google Scholar 

  • Hiller, K. and Elahi, M. (1984) Structural development and hydrocarbon entrapment in the Surma Basin, Bangladesh (North-East Indo-Burman fold belt). Proc. 5th Offshore South Asia Conf. Singapore, pp.364–387.

  • Hossain, H.M.Z., Roser, B.P. and Kimura, J.I. (2010) Petrography and whole-rock geochemistry of the Tertiary Sylhet succession, northeastern Bengal Basin, Bangladesh: Provenance and source area weathering. Sediment. Geol., v.228, pp.171–183.

    Article  Google Scholar 

  • Ingersoll, R.V. and Suczek, C.A. (1979) Petrology and provenance of Neogene sand from Nicobar and Bangal Fans, DSDP sites 211 and 218. Jour. Sediment. Petrol., v.49, pp.1217–1228.

    Google Scholar 

  • Jafarzadeh, M. and Hosseini-Barzi, M. (2008) Petrography and Geochemistry of Ahwaz Sandstone Member of Asmari Formation, Zagros, Iran: Implications on Provenance and Tectonic Setting. Revi. Mexicana de Cien. Geol., v.25, pp.247–260.

    Google Scholar 

  • Jokhan, R. and Venkatraman, B. (1984) Tectonic framework and hydrocarbon prospects of Mizoram, Proc. Symposium on the Petroliferous basin of India. Petrol. Asia Jour., v.2, pp.60–65.

    Google Scholar 

  • Madhavaraju, J., Erik Ramirez-Montoya, E., Monreal, R., Gonźalez-Leon, C.M., Pi-Puig, T., Espinoza-Maldonado, I.G. and Grijalva-Noriega, F.J. (2016) Paleoclimate, paleoweathering and paleoredox conditions of Lower Cretaceous shales from the Mural Limestone, Tuape section, northern Sonora, Mexico: Constraints from clay mineralogy and geochemistry. Revi. Mexicana de Cien. Geol., v.33(1), pp.34–48.

    Google Scholar 

  • Manikyamba, C., Kerrich, R., Gonzalez-Alvarez, I., Mathur, M. and Khanna, C.T. (2008) Geochemistry of paleoproterozoic black shales from the intracontinental Cuddapah basin, India: implications for provenance, tectonic setting, and weathering intensity. Precambrian Res., v.162, pp.424–440.

    Article  Google Scholar 

  • Mazumder, S., Adhikari, K. and Mitra, D. S. (2016) A Neotectonic based Geomorphic analysis using Remote Sensing Data to Delineate Potential Areas of Hydrocarbon Exploration: Cachar Area, Assam. Jour. Geol. Soc. India, v.88, pp.87–100.

    Article  Google Scholar 

  • McLennan, S.M. (1989) Rare earth elements in sedimentary rocks: influence of provenance and sedimentary processes, in: Lipin, B.R., McKay G.A. (Eds.), Geochemistry and mineralogy of rare earth elements. Rev. Mineral., v.21, pp.169–200.

  • Merino, E. (1975) Diagenesis in Tertiary sandstones from Kettleman North Dome, California: I. Diagenetic mineralogy. Jour. Sedment. Petrol., v.45, pp. 320–336.

    Google Scholar 

  • Middleton, G. V. and Hampton, M. A. (1973) Sediment gravity flows: mechanics of flow and deposition, in Turbidites and Deep-Water Sedimentation. Society of Economic Paleontologists and Mineralogists, Pacific Section Short Cour. Lec. Notes, pp.1–38.

  • Murthy, M. V. N., Talukdar, S. C. and Batthacharya, A. C. (1969) The Dauki Fault of Assam. Bull. ONGC, v.6, pp.57–64.

    Google Scholar 

  • Nagarajan, R., Jong, J. and Kessler, F. L. (2017b) Provenance of the Neogene sedimentary rocks from the Tukau and Belait Formations, Northeastern Borneo by mineralogy and geochemistry. Warta Geol., v.43(2), pp.10–16.

    Google Scholar 

  • Nesbitt, H.W. and Young, G.M. (1982) Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature, v.299, pp.715–717.

    Article  Google Scholar 

  • Nesbitt, H. W. and Young, G. M. (1984) Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations; Geochim. Cosmochim. Acta, v.48, pp.1523–1534.

    Article  Google Scholar 

  • Paikaray, S., Banerjee, S. and Mukherji, S. (2008) Geochemistry of shales from the Paleoproterozoic to Neoproterozoic Vindhyan Supergroup: Implications on provenance, tectonics and paleoweathering. Jour. Asian Earth Sci., v.32, pp.34–48.

    Article  Google Scholar 

  • Pandey, S. and Parcha, S. K. (2017) Provenance, tectonic setting and source-area weathering of the lower Cambrian sediments of the Parahio Valley in the Spiti Basin, India. Jour. Earth Sys. Sci., v.126(27), pp.1–16.

    Google Scholar 

  • Patra, A., Singh, B. P. and Srivastava, V. K. (2014) Provenance of the late Paleocene Sandstones of the Jaisalmer Basin, western India. Jour. Geol. Soc. India, v.83, pp.657–664.

    Article  Google Scholar 

  • Periasamy, V. and Venkateshwarlu, M. V. (2017) Petrography and Geochemistry of Jurassic Sandstones from the Jhuran Formation of Jara dome, Kachchh basin, India: Implications for Provenance and Tectonic setting. Jour. Earth Syst. Sci., v. 126(44), pp.1–20.

    Google Scholar 

  • Pettijohn, F. J., Potter, P. E. and Siever, R. (1972) Sand and sandstones, Springer-Verlag, Berlin, 618p.

    Google Scholar 

  • Potter, P. E. (1978) Petrology and chemistry of modern Big River sands. Jour. Geol, v.86, pp.423–449.

    Article  Google Scholar 

  • Rahman, M. J. J. and Suzuki, S. (2007) Geochemistry of sandstones from the Miocene Surma Group, Bengal Basin, Bangladesh: Implications for Provenance, tectonic setting and weathering. Geoch. Jour., v.41, pp.415–428.

    Article  Google Scholar 

  • Roser, B. P. and Korsch, R. J. (1986) Determination of tectonic setting of sandstone–mudstone suites using SiO2 content and K2O/Na2O ratio. Jour. Geol., v.94, pp.635–650.

    Article  Google Scholar 

  • Roser, B. P. and Korsch, R. J. (1988) Provenance signatures of sandstone–mudstone suites determined using discriminant function analysis of major-element data. Chem. Geol., v.67, pp.119–139.

    Article  Google Scholar 

  • Saini, N. K., Mukherjee, P. K., Rathi, M. S. and Khanna, P. P. (2000) Evaluation of energy-dispersive x-ray fluorescence spectrometry in the rapid analysis of silicate rocks using pressed powder pellets. X-ray Spectrometry, v.29, pp.166–172.

    Article  Google Scholar 

  • Schmidt, V. and Macdonald, D.A. (1979) The role of secondary porosity in the course of sandstone diagenesis. In: P.A. Scholle & P.R. Schuldger (Eds.), Aspects of Diagenesis. Soci. Eco. Paleo. Mineral., Spl. Pub., Tulsa, OK, v.29, pp.175–207.

  • Schwab, F.L. (1975) Framework mineralogy and chemical composition of continental margin type sandstone. Jour. Geol., v.3, pp.487–490.

    Google Scholar 

  • Schwab, F.L. (1986) Sedimentary signatures of foreland basin assemblages: real or counterfeit? In: Allen, P. A. and Homewood, P. (Eds.), Foreland Basins. Int. Ass. Sedim. Spl. Publ., v.8, pp.395–410.

  • Sharma, A., Sensarma, S., Kamlesh, K., Khanna, P. P. and Saini, N.K. (2013) Mineralogy and geochemistry of the Mahi River sediments in tectonically active western India: Implications for Deccan large igneous province source, weathering and mobility of elements in a semi-arid climate. Geochim Cosmochim. Acta, v.104, pp.63–83.

    Article  Google Scholar 

  • Singh, B. P. (2013) Evolution of the Palaeogene succession of the western Himalayan foreland basin. Geosci. Front., v.4, pp.199–212.

    Article  Google Scholar 

  • Surdam, R. C. (1973) Low-grade metamorphism of tuffaceous rocks in the Karmutsen Group, Vancouver Island, British Columbia. Geol. Soc. Amer. Bull., v.84, pp.1911–1922.

    Article  Google Scholar 

  • Suttner, L.J. and Dutta, P.K. (1986) Alluvial sandstone composition and paleoclimate, I. Framework mineralogy. Jour. Sediment. Petrol., v.56, pp.329–345.

    Google Scholar 

  • Tao, H., Wang, Q., Yang, X. and Jiang, L. (2013) Provenance and tectonic setting of Late Carboniferous clastic rocks in west Junggar, Xinjiang, China: A case from the Hala-alat Mountains. Jour. Asian Earth Sci., v.64, pp.210–222.

    Article  Google Scholar 

  • Taylor, S. R. and McLennan, S. M. (1985) The Continental Crust: Its Composition and Evolution: An Examination of the Geochemical Record Preserved in Sedimentary Rocks. Blackwell Science, Oxford, 312p.

    Google Scholar 

  • Umazano, A.M., Bellosi, E.S., Visconti, G., Jalfin, A.G. and Melchor, R.N. (2009) Sedimentary record of a Late Cretaceous volcanic arc in central Patagonia: petrography, geochemistry and provenance of fluvial volcaniclastic deposits of the Bajo Barreal Formation, San Jorge Basin, Argentina. Cretaceous Res., v.30, pp.749–766.

    Article  Google Scholar 

  • Verma, M., Kanhaiya, S., Singh, B.P. and Singh, S. (2022) Signatures of provenance, tectonics and chemical weathering in the Tawi River sediments of the western Himalayan Foreland, India. Jour. Sediment. Environ., v.7, pp.425–441.

    Article  Google Scholar 

  • Walker, T. R. (1967) Formation of red beds in modern and ancient deserts. Geol. Soc. Amer. Bull., v.78, pp.353–368.

    Article  Google Scholar 

  • Wilkinson, M., Milliken, K.L. and Haszeldine R.S. (2001) Systematic destruction of K-feldspar in deeply buried rift and passive margin sandstones. Jour. Geol. Soc. London., v.158, pp.675–683.

    Article  Google Scholar 

  • Zaid, S.M. (2012) Provenance, diagenesis, tectonic setting and geochemistry of Rudies sandstone (Lower Miocene), Warda field, Gulf of Suez, Egypt. Jour. African Earth Sci., v.66–67, pp.56–71.

    Article  Google Scholar 

  • Zaid, S.M. and Gahtani, F.A. (2015) Provenance, diagenesis, tectonic setting and geochemistry of Hawkesbury sandstone (Middle Triassic), southern Sydney Basin, Australia. Turkish Jour. Earth Sci., v.24, pp.72–98.

    Article  Google Scholar 

  • Zaid, S.M. (2017) Petrography and geochemistry of the Middle Miocene Gebel El Rusas sandstones, Eastern Desert, Egypt: Implications for provenance and tectonic setting; Jour. Earth Syst. Sci., v.126, pp.1–22.

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank to the Director, CSIR–North East Institute of Science and Technology, Jorhat, India for the permission to use SEM facility. The laboratory support extended by Sophisticated Analytical Instrument Facility (SAIF), Guwahati University is duly acknowledged. Thanks, are also due to the Regional Laboratory, Oil & Natural Gas Commission, Sivasagar, Assam, for the necessary help during the preparation of thin sections. The microscopic facility provided by the Department of Earth Science, Assam University, Silchar is also gratefully acknowledged. Last but not the least; our thanks are also due to the anonymous reviewers for their insightful reviews in improving the quality of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meghali Baruah.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baruah, M., Pandey, N. Petrological and Geochemical Characterization of Miocene Tipam Sandstone in Parts of Cachar Fold Belt, Northeast India. J Geol Soc India 99, 917–928 (2023). https://doi.org/10.1007/s12594-023-2413-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12594-023-2413-y

Navigation