Skip to main content
Log in

Analysis of Subsurface Soil Radon with the Environmental Parameters and Its Relation with Seismic Events

  • Original Article
  • Published:
Journal of the Geological Society of India

Abstract

This study reports continuous measurements of subsurface soil radon as well as environmental parameters for a period of three years. The survey was carried out along the active fault area in the Indo-Myanmar subduction zone in the north-eastern part which lies in the highest seismic zone of India. The wavelet-based decomposition of the environmental parameters was done using discrete wavelet transformation technique. The denoised environmental parameters by discrete wavelet transformation technique was fed as the inputs to the MLR (multiple linear regression) and MLP (multilayer perceptron) models. Residual radon was calculated and correlated with nearby seismic events. Many events of magnitude greater than or equal to 5 have occurred in the investigation area. It was possible to successfully correlate one event with the anomalous variation in soil radon. The correlated event was the only one with the shallow epicentral depth indicating that the investigated area has undergone a shallow rock fracturing due to the stress generated before the occurrence of the seismic event.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arafa, W. (2002) Permeability of radon-222 through some materials. Radiation Measurements, v.35(3), pp.207–211.

    Article  Google Scholar 

  • Asteriadis, G., Livieratos, E. (1989) Pre-seismic responses of underground water level and temperature concerning a 4.8 magnitude earthquake in Greece on October 20, 1988. Tectonophysics, v.170(1–2), pp.165–169.

    Article  Google Scholar 

  • Azimi-Garakani, D. (1990) Spark counter for alpha particle registration. In: Tommasino L, Furlan G., Khan, HA., Monnin M (Eds.), Radon monitoring in radioprotection, environmental radioactivity and earth sciences. ICTP, Trieste, 3–14 April 1989. Singapore: World Scientific, pp.164–170.

    Google Scholar 

  • Biagi, P.F., Ermini, A., Cozzi, E., Khatkevich, Y..M. and Gordeev, E.I. (2000) Hydrogeochemical precursors in Kamchatka (Russia) related to the strongest earthquakes in 1988–1997. In: Papadopoulos GA, Murty T, Venkatesh S, Blong R. (Eds), Natural Hazards. Springer, Dordrecht. doi:https://doi.org/10.1007/978-94-017-2386-2_10

    Google Scholar 

  • Bishop, C.M. (1995) Neural networks for pattern recognition. Oxford Univ. Press.

  • Camuffo, D., Fernicola, V. and Havermans, J. (2010) How to measure temperature and relative humidity. Instruments and instrumental problems. Basic Environmental Mechanisms Afecting Cultural Heritage. Understanding Deterioration Mechanisms for Conservation Purposes. COST Action D, v.42, pp.31–42.

    Google Scholar 

  • Choubey, V.M., Kumar, N. and Arora, B.R. (2009) Precursory signatures in the radon and geohydrological borehole data for M4.9 Kharsali earthquake of Garhwal Himalaya. Sci. Total Environ., v.407(22), pp.5877–5883.

    Article  Google Scholar 

  • Choubey, V.M., Sharma, K.K. and Ramola, R.C. (1994) Soil gas and indoor radon studies in Doon Valley, India. Nuclear Geophysics, v.8(1), pp.49–54.

    Google Scholar 

  • Chowdhury, S., Deb, A., Barman, C., Nurujjaman, M. and Bora, D.K. (2022) Simultaneous monitoring of soil 222Rn in the Eastern Himalayas and the geothermal region of eastern India: an earthquake precursor. Natural Hazards, v.112(2), pp.1477–1502.

    Article  Google Scholar 

  • Ciach, G.J. (2003) Local random errors in tipping-bucket rain gauge measurements. Jour. Atmos. Oceanic Tech., v.20(5), pp.752–759.

    Article  Google Scholar 

  • Crockett, R.G.M., Gillmore, G.K., Phillips, P.S., Denman, A.R. and Groves-Kirkby, C.J. (2006) Radon anomalies preceding earthquakes which occurred in the UK, in summer and autumn 2002. Sci. Total Environ., v.364(1–3), pp.138–148.

    Article  Google Scholar 

  • Dai, Xd., Joseph, B. and Motard, R.L. (1994) Introduction to Wavelet Transform and Time-Frequency Analysis. In: Motard, R.L., Joseph, B. (Eds.), Wavelet Applications in Chemical Engineering. The Kluwer International Series in Engineering and Computer Science, v.272. Springer, Boston, MA. doi:10.1007/978-1-4615-2708-4_1

    Google Scholar 

  • Daubechies, I. (1993) Orthonormal bases of compactly supported wavelets II. Variations on a theme. SIAM Jour. Mathematical Analysis, v.24(2), pp.499–519.

    Article  Google Scholar 

  • Dobrovolsky, I.P., Zubkov, S.I. and Miachkin, V.I. (1979) Estimation of the size of earthquake preparation zones. Pure Appl. Geophys., v.117(5), pp.1025–1044.

    Article  Google Scholar 

  • Donoho, D.L. and Johnstone, J.M. (1994) Ideal spatial adaptation by wavelet shrinkage. Biometrika, v.81(3), pp.425–455.

    Article  Google Scholar 

  • Eappen, K.P. and Mayya, Y.S. (2004) Calibration factors for LR-115 (type-II) based radon thoron discriminating dosimeter. Radiation Measurements, v.38(1), pp.5–17.

    Article  Google Scholar 

  • Etiope, G. and Martinelli, G. (2002) Migration of carrier and trace gases in the geosphere: an overview. Phys. Earth Planet. Inter., v.129(3–4), pp.185–204.

    Article  Google Scholar 

  • Fleischer, R.L., Price, P.B., Walker, R.M. and Walker, R.M. (1975) Nuclear tracks in solids: principles and applications. Univ. California Press.

  • Fu, C.C., Yang, T.F., Walia, V. and Chen, C.H. (2005) Reconnaissance of soil gas composition over the buried fault and fracture zone in southern Taiwan. Geochemical Jour., v.39(5), pp.427–439.

    Article  Google Scholar 

  • Fujiyoshi, R., Sakamoto, K., Imanishi, T., Sumiyoshi, T., Sawamura, S., Vaupotic, J. and Kobal, I. (2006) Meteorological parameters contributing to variability in 222Rn activity concentrations in soil gas at a site in Sapporo, Japan. Sci. Total Environ., v.370(1), pp.224–234.

    Article  Google Scholar 

  • Garavaglia, M., Braitenberg, C. and Zadro, M. (1998) Radon monitoring in a cave of North- Eastern Italy. Physics and Chemistry of the Earth, v.23(9–10), pp.949–952.

    Article  Google Scholar 

  • Gardner, M.W. and Dorling, S.R. (1998) Artificial neural networks (the multilayer perceptron) - a review of applications in the atmospheric sciences. Atmos. Environ., v.32(14–15), pp.2627–2636.

    Article  Google Scholar 

  • Haykin, S. (1998) Neural networks: a comprehensive foundation. Prentice Hall PTR, Englewood Cliffs.

    Google Scholar 

  • He, C., Xing, J., Li, J., Yang, Q. and Wang, R. (2015) A new wavelet threshold determination method considering interscale correlation in signal denoising. Mathematical Problems in Engineering 2015. doi:https://doi.org/10.1155/2015/280251

  • Hecht-Nielsen, R. (1987) Kolmogorov’s mapping neural network existence theorem. In: Proceedings of the international conference on Neural Networks, IEEE Press New York, v.3, pp.11–14.

    Google Scholar 

  • Hocking, R.R. (1976) A Biometrics invited paper. The analysis and selection of variables in linear regression. Biometrics, v.32(1), pp.1–49.

    Article  Google Scholar 

  • Hornik, K., Stinchcombe, M. and White, H. (1989) Multilayer feedforward networks are universal approximators. Neural Networks, v.2(5), pp.359–366.

    Article  Google Scholar 

  • Huang, G.B. (2003) Learning capability and storage capacity of two-hidden-layer feedforward networks. IEEE Trans. on neural networks, v.14(2), pp.274–281.

    Article  Google Scholar 

  • IBM Corp. Released (2019) IBM SPSS Statistics for Windows, Version 26.0. Armonk, NY: IBM Corp

    Google Scholar 

  • Jain, A.K., Mao, J. and Mohiuddin, K.M. (1996) Artificial neural networks: A tutorial. Computer, v.29(3), pp.31–44.

    Article  Google Scholar 

  • Jaishi, H.P., Singh, S., Tiwari, R.P. and Tiwari, R.C. (2013) Radon and thoron anomalies along Mat fault in Mizoram, India. Jour. Earth Syst. Sci., v.122(6), pp.1507–1513.

    Article  Google Scholar 

  • Jaishi, H.P., Singh, S., Tiwari, R.P. and Tiwari RC (2014a) Temporal variation of soil radon and thoron concentrations in Mizoram (India), associated with earthquakes. Natural Hazards, v.72(2), pp.443–454.

    Article  Google Scholar 

  • Jaishi, H.P., Singh, S., Tiwari, R.P. and Tiwari, R.C. (2014b) Correlation of radon anomalies with seismic events along Mat fault in Serchhip District, Mizoram, India. Applied Radiation and Isotopes, v.86, pp.79–84.

    Article  Google Scholar 

  • Jaishi, H.P., Singh, S., Tiwari, R.P. and Tiwari, R.C. (2014c) Analysis of soil radon data in earthquake precursory studies. Annals Geophys., v.57(5), S0544. doi:https://doi.org/10.4401/ag-6513

    Google Scholar 

  • Jönsson, G. (1981) The angular sensitivity of Kodak LR-film to alpha particles. Nuclear Instruments and Methods in Physics Res., v.190(2), pp.407–414.

    Article  Google Scholar 

  • Kayal, J.R. and De, R. (1991) Microseismicity and tectonics in northeast India. Bull. Seismol. Soc. Amer., v.81(1), pp.131–138.

    Article  Google Scholar 

  • King, C.Y. (1978) Radon emanation on San Andreas fault. Nature, v.271(5645), pp.516–519.

    Article  Google Scholar 

  • King, C.Y. (1980) Geochemical measurements pertinent to earthquake prediction. Jour. Geophys. Res.: Solid Earth, v.85(B6), pp.3051–3051.

    Article  Google Scholar 

  • King, C.Y., King, B.S., Evans, W.C. and Zhang, W. (1996) Spatial radon anomalies on active faults in California. Appl. Geochem., v.11(4), pp.497–510.

    Article  Google Scholar 

  • Kolmogorov, A.N. (1957) On the representation of continuous functions of many variables by superposition of continuous functions of one variable and addition. Doklady Akademii Nauk, Russian Acad. Sci., v.114(5), pp.953–956.

    Google Scholar 

  • Kumar, G., Kumar, A., Walia, V., Kumar, J., Gupta, V., Yang, T., Singh, S. and Bajwa, B.S. (2013) Soil gas radon-thoron monitoring in Dharamsala area of north-west Himalayas, India using solid state nuclear track detectors. Jour. Earth Syst. Sci., v.122(5), pp.1295–1301.

    Article  Google Scholar 

  • Kumar, A., Singh, S., Mahajan, S., Bajwa, B.S., Kalia, R. and Dhar, S. (2009) Earthquake precursory studies in Kangra valley of North West Himalayas, India, with special emphasis on radon emission. Applied Radiation and Isotopes, v.67(10), pp.1904–1911.

    Article  Google Scholar 

  • Kùrková, V. (1992) Kolmogorov’s theorem and multilayer neural networks. Neural Networks, v.5(3), pp.501–506.

    Article  Google Scholar 

  • Larkina, V.I., Migulin, V.V., Molchanov, O.A., Kharkov, I.P., Inchin, A.S. and Schvetcova, V.B. (1989) Some statistical results on very low frequency radio wave emissions in the upper ionosphere over earthquake zones. Phys. Earth Planet. Inter., v.57(1–2), pp.100–109.

    Article  Google Scholar 

  • Liu, R., Yang, B., Zio, E. and Chen, X. (2018) Artificial intelligence for fault diagnosis of rotating machinery: A review. Mechanical Systems and Signal Processing, v.108, pp.33–47.

    Article  Google Scholar 

  • Malik, S.R. and Durrani, S.A. (1974) Spatial distribution of uranium in meteorites, tektites and other geological materials by spark counter. Internat. Jour. Appl. Radiation and Isotopes, v.25(1), pp.1–4.

    Article  Google Scholar 

  • Mallat, S.G. (1989) Multifrequency channel decompositions of images and wavelet models. IEEE Trans. Acoustics, Speech, and Signal Processing, v.37(12), pp.2091–2110.

    Article  Google Scholar 

  • Mayya, Y.S., Eappen, K.P. and Nambi, K.S.V. (1998) Methodology for mixed field inhalation dosimetry in monazite areas using a twin-cup dosemeter with three track detectors. Radiation protection dosimetry, v.77(3), pp.177–184.

    Article  Google Scholar 

  • Merifield, P.M. and Lamar, D.L. (1981) Anomalous water level changes and possible relation withearthquakes. Geophys. Res. Lett., v.8(5), pp.437–440.

    Article  Google Scholar 

  • Nazaroff, W.W. (1992) Radon transport from soil to air. Rev. Geophys., 30(2), pp.137–160.

    Article  Google Scholar 

  • Neri, M., Giammanco, S., Ferrera, E., Patanè, G. and Zanon, V. (2011) Spatial distribution of soil radon as a tool to recognize active faulting on an activevolcano: the example of Mt. Etna (Italy). Jour. Environ. Radioact., v.102(9), pp.863–870

    Article  Google Scholar 

  • Pena, P., Segovia, N., Azorin, J. and Mena, M. (2001) Soil radon and gamma-dose rate at a coastal region in Mexico. Jour. Radioanalytical and Nuclear Chemistry, v.247(1), pp.39–43.

    Article  Google Scholar 

  • Pinault, J.L. and Baubron, J.C. (1996) Signal processing of soil gas radon, atmospheric pressure, moisture, and soil temperature data: a new approach for radon concentration modeling. Jour. Geophys. Res.: Solid Earth, v.101(B2), pp.3157–3171.

    Article  Google Scholar 

  • Rafique, M., Tareen, A.D.K., Mir, A.A., Nadeem, M.S.A., Asim, K.M. and Kearfott, K.J. (2020) Delegated regressor, a robust approach for automated anomaly detection in the soil radon time series data. Scientific Reports, v.10(1), pp.1–11.

    Article  Google Scholar 

  • Ramachandran, T.V., Lalit, B.Y. and Mishra, U.C. (1987) Measurement of radon permeability through some membranes. Internat. Jour. Radiation Appl. Instrument.. Part D. Nuclear Tracks and Radiation Measurements, v.13(1), pp.81–84.

    Article  Google Scholar 

  • Ramola, R.C. (2010) Relation between spring water radon anomalies and seismic activity in Garhwal Himalaya. Acta Geophysica, v.58(5), pp.814–827.

    Article  Google Scholar 

  • Ramola, R.C., Prasad, Y., Prasad, G., Kumar, S. and Choubey, V.M. (2008) Soil-gas radon as seismotectonic indicator in Garhwal Himalaya. Applied Radiation and Isotopes, v.66(10), pp.1523–1530.

    Article  Google Scholar 

  • Rastogi, B.K., Rao, C.R., Chadha, R.K. and Gupta, H.K. (1987) Precursory phenomena in themicroearthquake sequence near the Osmansagar reservoir, Hyderabad, India. Tectonophysics, v.138(1), pp.17–24.

    Article  Google Scholar 

  • Reasenberg, P.A. (1999) Foreshock occurrence before large earthquakes. Jou. Geophys. Res.: Solid Earth, v.104(B3), pp.4755–4768.

    Article  Google Scholar 

  • Richon, P., Sabroux, J.C., Halbwachs, M., Vandemeulebrouck, J., Poussielgue, N., Tabbagh, J. and Punongbayan, R. (2003) Radon anomaly in the soil of Taal volcano, the Philippines: A likely precursor of the M 7.1 Mindoro earthquake (1994). Geophys. Res. Lett., v.30(9). doi: https://doi.org/10.1029/2003GL016902

    Google Scholar 

  • Rikitake, T. (1976) Recurrence of great earthquakes at subduction zones. Tectonophysics, v.35(4), pp.335–362.

    Article  Google Scholar 

  • Ruckerbauer, F. and Winkler, R. (2001) Radon concentration in soil gas: a comparison of methods. Applied Radiation and Isotopes, v.55(2), pp.273–280.

    Article  Google Scholar 

  • Rumelhart, D.E., Hinton, G.E. and Williams, R.J. (1986) Learning representations by back-propagating errors. Nature, v.323(6088), pp.533–536.

    Article  Google Scholar 

  • Segovia, N., Pena, P. and Tamez, E. (1991) Radon survery in Mexico City. Internat. Jour. Radiation Applications and Instrumentation. Part D. Nuclear Tracks and Radiation Measurements, v.19(1–4), pp.405–408.

    Article  Google Scholar 

  • Schalkoff, R.J. (2007) Pattern Recognition. In: B.W. Wah (Ed.) Wiley Encyclopedia of Computer Science and Engineering. doi:https://doi.org/10.1002/9780470050118.ecse302

  • Shashikumar, T.S., Ragini, N., Chandrashekara, M.S. and Paramesh, L. (2009) Radon in soil and its concentration in the atmosphere around Mysore city, India. Indian Jour. Physics, v.83(8), pp.1163–1169.

    Article  Google Scholar 

  • Singh, M., Ramola, R.C., Singh, S. and Virk, H.S. (1988) The influence of meteorological parameters on soil gas radon. Jour. Assoc. Explor. Geophys., v.9(2), pp.85–90.

    Google Scholar 

  • Singh, S., Jaishi, H.P., Tiwari, R.P. and Tiwari, R.C. (2016) A study of variation in soil gas concentration associated with earthquakes near Indo-Burma Subduction zone. Geoenvironmental Disasters, v.3(1), pp.1–8.

    Article  Google Scholar 

  • Singh, S., Jaishi, H.P., Tiwari, R.P. and Tiwari, R.C. (2017) Time series analysis of soil radon data using multiple linear regression and artificial neural network in seismic precursory studies. Pure Appl. Geophys., v. 174(7), pp.2793–2802.

    Article  Google Scholar 

  • Singh, S., Kumar, A., Bajwa, B.S., Mahajan, S., Kumar, V. and Dhar, S. (2010) Radon monitoring in soil gas and ground water for earthquake prediction studies in North West Himalayas, India. TAO: Terrestrial, Atmospheric and Oceanic Sciences, v.21(4), pp.685–695.

    Article  Google Scholar 

  • Stranden, E., Kolstad, A.K. and Lind, B., 1984. Radon exhalation: moisture and temperature dependence. Health Phys., v.47(3), pp.480–484

    Google Scholar 

  • Sugisaki, R., Ido, M., Takeda, H., Isobe, Y., Hayashi, Y., Nakamura, N., Satake, H. and Mizutani, Y. (1983) Origin of hydrogen and carbon dioxide in fault gases and its relation to fault activity. Jour. Geol., v.91(3), pp.239–258.

    Article  Google Scholar 

  • Sundal, A.V., Valen, V., Soldal, O. and Strand, T. (2008) The influence of meteorological parameters on soil radon levels in permeable glacial sediments. Sci. Total Environ., v.389(2–3), pp.418–428.

    Article  Google Scholar 

  • Tabachnick, B.G., Fidell, L.S. and Ullman, J.B. (2007) Using multivariate statistics. Boston, MA: Pearson, v.5, pp.481–498.

    Google Scholar 

  • Thuamthansanga, T., Sahoo, B.K., Tiwari, R.C. and Sapra, B.K. (2019) A study on the anomalous behaviour of Radon in different depths of soil at a tectonic fault and its comparison with time-series data at a distant continuous monitoring station. SN Appl. Sci., v.(1), 683. doi:https://doi.org/10.1007/s42452-019-0646-6

  • Thuamthansanga, T., Sahoo, B.K. and Tiwari, R.C. (2021) Study of pre-seismic thoron anomaly using empirical mode decomposition-based Hilbert-Huang transform at Indo-Burman subduction region. Jour. Radioanalyt. Nuclear Chem., v.330(3), pp.1571–1582.

    Article  Google Scholar 

  • Tiwari, R.C. (2020) Study of the influencing nature of meteorological factors air temperature and relative humidity on the exhalation process of 222Rn/220Rn gases at Mat Fault. Jour. Appl. and Fundamental Sciences, v.6(1), pp.41–46.

    Google Scholar 

  • Tiwari, R.P., Rajkonwar, C., Malsawma, P.L.J., Ralte, V.Z. and Patel, S.J. (2011) Trace fossils from Bhuban Formation, Surma Group (lower to middle miocene) of Mizoram India and their palaeoenvironmental significance. Jour. Earth Syst. Sci., v.120(6), pp.1127–1143.

    Article  Google Scholar 

  • Tranmer, M. and Elliot, M. (2008) Multiple linear regression. The Cathie Marsh Centre for Census and Survey Research (CCSR), v.5(5), pp.1–5.

    Google Scholar 

  • Ulomov, V.I. and Mavashev, B.Z. (1967) A precursor of a strong tectonic earthquake. In: Doklady Akademii Nauk. Russian Acad. Sci., v.176(2), pp.319–321.

    Google Scholar 

  • Uyanýk, G.K. and Güler, N. (2013) A study on multiple linear regression analysis. Procedia-Social and Behavioral Sciences, v.106, pp.234–240.

    Article  Google Scholar 

  • Virk, H.S. and Singh, B. (1994) Radon recording of Uttarkashi earthquake. Geophys. Res. Lett., v.21(8), pp.737–740.

    Article  Google Scholar 

  • Wakita, H., Nakamura, Y., Notsu, K., Noguchi, M. and Asada, T. (1980) Radon anomaly: a possible precursor of the 1978 Izu-Oshima-kinkai earthquake. Science, v.207(4433), pp.882–883.

    Article  Google Scholar 

  • Walia, V., Mahajan, S., Kumar, A., Singh, S., Bajwa, B.S., Dhar, S. and Yang, T.F. (2008) Fault delineation study using soil-gas method in the Dharamsala area, NW Himalayas, India. Radiation Measurements, v.43, pp.S337–S342.

    Article  Google Scholar 

  • Wattananikorn, K., Kanaree, M. and Wiboolsake, S. (1998) Soil gas radon as an earthquake precursor: some considerations on data improvement. Radiation Measurements, v.29(6), pp.593–598.

    Article  Google Scholar 

  • Xie, X., Liu, H., Shu, M., Zhu, Q., Huang, A., Kong, X. and Wang, Y. (2021) A multi-stage denoising framework for ambulatory ECG signal based on domain knowledge and motion artifact detection. Future Generation Computer Systems, v.116, pp.103–116.

    Article  Google Scholar 

  • Yang, J., Busen, H., Scherb, H., Hürkamp, K., Guo, Q. and Tschiersch, J. (2019) Modeling of radon exhalation from soil influenced by environmental parameters. Sci. Total Environ., v.656, pp.1304–1311.

    Article  Google Scholar 

  • Yount, R. (2006) Research Design and Statistical Analysis in Christian Ministry, 4th Edition, IV Statistical Procedures. Fort Worth.

  • Zmazek, B., Zivcic, M., Vaupotic, J., Bidovec, M., Poljak, M. and Kobal, I. (2002) Soil radon monitoring in the Krško Basin, Slovenia. Applied Radiation and Isotopes, v.56(4), pp.649–657.

    Article  Google Scholar 

Download references

Acknowledgements

Authors are grateful to the Ministry of Earth Sciences (MoES), Govt. of India, New Delhi, in the form of Major project vide Sanction Order No. MoES/P.O.(Seismo)/1(167)/2013 dated 10.12.2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramesh Chandra Tiwari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jaishi, H.P., Singh, S., Tiwari, R.P. et al. Analysis of Subsurface Soil Radon with the Environmental Parameters and Its Relation with Seismic Events. J Geol Soc India 99, 847–858 (2023). https://doi.org/10.1007/s12594-023-2392-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12594-023-2392-z

Navigation