Skip to main content
Log in

Late Campanian-Maastrichtian in Pondicherry Area (Cauvery Basin) Southern India: Bioevents and Palaeoenvironmental Inferences from Planktonic Foraminifera

  • Original Article
  • Published:
Journal of the Geological Society of India

Abstract

The late Campanian/Maastrichtian succession exposed in the Pondicherry area provides one of the best exposed marine sections in the Cauvery basin and is examined for its foraminiferal contents. The biostratigraphic distribution of 72 species of planktonic foraminifera has been used to identify eleven planktonic zones and subzones and correlated to the global bioevents.

The present biostratigraphic analysis has revealed four bioevents in the late Campanian-Maastrichtian sediments of the Pondicherry area. The first one was associated with the Radotruncana calcarata (CF10), which correlated to the late Campanian event (LCE); the second bioevent was associated with the Rugoglobigerina rotundata (CF7a) and the Rugoglobigerina scotti CF7b, which correlated to the (Campanian-Maastrichtian boundary event (CMBE); the third bioevent is associated with Globotruncana linneiana and Contusotruncana contusa, which correlated to middle Maastrichtian event (MME). The fourth bioevent associated with the Racemiguembelina fructicosa, which is correlated with the late Maastrichtian event (LME) associated with the Cretaceous/Paleogene boundary in the studied area.

Three principal climate and faunal associations were identified in the present study in Cauvery basin; (1) worldwide cooling with minimal variation in the late Campanian-earliest Maastrichtian observed through extraordinary diversification for the Cretaceous mostly accomplished in the early Maastrichtian (Event-1, C31r), (2) warming and stable high diversity (Event-2, upper C31r to lower C30n), (3) return to global cooling and high-stress environments (Event-3, C30n)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abramovich, S., Keller, G., Stuben, D., Berner, Z. (2003) Characterization of late Campanian and Maastrichtian planktonic foraminiferal depth habitats and vital activities based on stable isotopes. Palaeogeo. Palaeoclimat., v.202, pp.29. doi:https://doi.org/10.1016/S0031-0182(03)00572-8.

    Article  Google Scholar 

  • Allameh, M., Nejad, R.R.Y. (2017) Late Cretaceous biostratigraphy planktonic foraminifera of the Farokhi Formation, Iran. Open Jour. Geol., v. 7, pp.320–334. doi:https://doi.org/10.4236/ojg.2017.73022.

    Article  Google Scholar 

  • Ando, A., Woodard, S. C., Evans, H.F., Littler, K., Herrmann, S., MacLeod, K.G., Kim, S., Khim, B.-K., Robinson, S.A., Huber, B.T., (2013) An emerging palaeoceanographic »missing link¼: Multidisciplinary study of rarely recovered parts of a deep-sea Santonian-Campanian transition from Shatsky Rise. Jour. Geol. Soc., v.170, pp.381–384. doi:https://doi.org/10.1144/jgs2012-137.

    Article  Google Scholar 

  • Arz, J.A., Molina, E. (2001) Planktonic foraminiferal quantitative analysis across the Campanian/Maastrichtian boundary at Tercis les Bains (France). In: Odin, G.S. (Ed.), The Campanian Maastrichtian Stage Boundary: Characterisation at Tercis les Bains (France) and Correlation with Europe and other Continents. Developments in Palaeontology and Stratigraphy, vol. 19. Elsevier, Amsterdam, pp.338–348.

    Google Scholar 

  • Barrera, E., Savin, S.M. (1999) Evolution of Campanian-Maastrichtian marine climates and oceans. In: E. Barrera and C.C. Johnson, Editors, Evolution of the Cretaceous Ocean-Climate System, Geol. Soc. Amer., Spec. Paper, v.332, pp.245–282. doi:https://doi.org/10.1130/0-8137-2332-9.245.

  • Berger, W.H., Bonneau, M.C., Parker, F.L. (1982) Foraminifera on the deep-sea floor: lysocline and dissolution rate. Oceanologica Acta, v.5(2), pp.249–258. Open Access version: https://archimer.ifremer.fr/doc/00120/23161/

    Google Scholar 

  • BouDagher-Fadel, M.K. (2013) Biostratigraphic and Geological Significance of planktonic Foraminifera. Office of the Vice Provost Research, University College, London, 2 Taviton Street, London WC1E 0BT. Second edition. pp.271. doi:https://doi.org/10.14324/111.9781910634257.

    Book  Google Scholar 

  • Bown, P. (2005) Selective calcareous nannoplankton survivorship at the Cretaceous-Tertiary boundary. Geology, v.33(8), pp.653–656, doi:https://doi.org/10.1130/G21566AR.1.

    Article  Google Scholar 

  • Blanford, H.F. (1865) On the Cretaceous and other rocks of South Arcot and Trichinopoly Districts, India. Rec. Geol. Surv. India, v. 4, pp.1–217.

    Google Scholar 

  • Bralower, T. J., Premoli Silva, I., Malone, M. J. (2002) Shipboard Scientific Party, Site 1210B. Proceedings of the Ocean Drilling Program, Initial Reports, v. 198, pp.1–89. doi: https://doi.org/10.2973/odp.proc.ir.198.106.

    Google Scholar 

  • Bralower, T.J., Premoli Silva, I., Malone, M.J. (2006) Leg 198 synthesis: A remarkable 120 m.y. record of climate and oceanography from Shatsky Rise, northwest Pacific Ocean, Proc. Ocean Drill. Program Sci. Results, v.198, pp.1–47. doi:https://doi.org/10.2973/odp.proc.sr.198.101.2006.

    Google Scholar 

  • Caldeira, K., Wickett, M.E. (2005) Ocean model predictions of chemistry changes from carbon dioxide emissions to the atmosphere and ocean. Jour. Geophys. Res., v.110, C09S04. doi:10.1029JC002671.

    Article  Google Scholar 

  • Canudo, J.I., Molina, E. (1992) Planktonic foraminiferal faunal turnover and bio-chronostratigraphy of the Paleocene-Eocene boundary at Zumaya, northern Spain. Rev. Soc. Geol. Esp., v.5, pp.145–157, doi: 0077-7749/92/0186-0097.

    Google Scholar 

  • Caron, M. (1983) La spéciation chez les Foraminiferes planctoniques. Une réponse adaptée aux contraintes de l’enivrement. Sittelle, v. 10, pp.671–676.

    Google Scholar 

  • Caron, M. (1985) Cretaceous planktonic foraminifera, in Plankton Stratigraphy. Bolli, H.M.; Sautiders, J. B. and Perch-Nielsen, K. (Eds.), Cambridge Univ. Press, Cambridge, pp.17–86.

  • Chauris, H., Le Rousseau, J., Beaudoin, B., Propson, S., Montanari, A. (1998) Inoceramid extinction in the Gubbio basin (north eastern Apennines of Italy) and relations with mid-Maastrichtian environmental changes. Palaeogeo. Palaeoclimat. Palaeoeco., v.139, pp.177–193, doi:https://doi.org/10.1016/S0031-0182(97)00150-8.

    Article  Google Scholar 

  • Cramer, B.S., Toggweiler, J.R., Wright, J.D., Katz, M.E., Miller, K.G. (2009) Ocean overturning since the Late Cretaceous: Inferences from a new benthic foraminiferal isotope compilation. Paleoceano., v.24, PA4216. doi:https://doi.org/10.1029/2008PA001683.

    Article  Google Scholar 

  • Doney, S.C., Fabry, V.J., Feely, R.A., Kleypas, J. (2009) Ocean acidification: The other CO2 problem. Annual Rev. Marine Sci., v.1, pp.169–192. doi:https://doi.org/10.1146/annurev.marine.010908.163834.

    Article  Google Scholar 

  • Donnadieu, Y., Puceat, E., Moiroud, M., Guillocheau, F., Deconinck, J.-F. (2016) A better-ventilated ocean triggered by Late Cretaceous changes in continental configuration. Nature Commun., v.7, 10316. doi:https://doi.org/10.1038/ncomms10316.

    Article  Google Scholar 

  • Douglas, R.G., Savin, S.M. (1978) Oxygen isotopic evidence for the depth stratification of Tertiary and Cretaceous planktic foraminifera. Marine Micropaleont., v.3(2), pp.175–196. doi:https://doi.org/10.1016/0377-8398(78)90004-X.

    Article  Google Scholar 

  • El Gammal, R.M.H., Orabi, H.O. (2019) Coniacian-late Campanian planktonic events in the Duwi Formation, Red Sea Region, Egypt. Jour. Geol. Geophys., v.8(1), pp.16. doi: https://doi.org/10.4172/2381-8719.1000456.

    Google Scholar 

  • Falzoni F., Petrizzo, M.R., Clarke, L.C., MacLeod K.G. (2016) Long-Term cretaceous carbon and oxygen isotope trends and planktonic foraminiferal turnover: A new record from the southern mid-latitudes. GSA Bull., v.128, pp.1725–1735. doi:https://doi.org/10.1130/B31399.1.

    Article  Google Scholar 

  • Feely, R.A., Sabine, C.L., Lee, K., Berelson, W., Kleypas, J., Fabry, V. J., Millero, F.J. (2004) Impact of anthropogenic CO2 on the CaCO3 system in the oceans. Science, v.305, pp.362–366. doi: https://doi.org/10.1126/science.1097329.

    Article  Google Scholar 

  • Frank, T.D., Thomas, D.J., Leckie, R.M., Arthur, M.A., Bown, P. R., Jones, K., Lees, J.A. (2005) The Maastrichtian record from Shatsky Rise (northwest Pacific): A tropical perspective on global ecological and oceanographic changes, Paleoceano., v.20, PA1008. doi:https://doi.org/10.1029/2004PA001052.

    Article  Google Scholar 

  • Friedrich, O., Herrle, J.O., Wilson, P.A., Cooper, M.J., Erbacher, J., Hemleben, C. (2009) Early Maastrichtian carbon cycle perturbation and cooling event: implications from the South Atlantic Ocean. Paleoceano., v.24(2), PA2211. doi:https://doi.org/10.1029/2008PA001654.

    Article  Google Scholar 

  • Friedrich, O., Norris, R.D., Erbacher, J. (2012) Evolution of Middle to Late Cretaceous oceans-A 55 m.y. record of Earth’s temperature and carbon cycle. Geology, v. 40, pp.107–110. doi: https://doi.org/10.1130/G32701.1.

    Article  Google Scholar 

  • Gale, A.S., Hancock, J.M., Kennedy, W.J., Petrizzo, M.R., Lees, J.A., Walaszczyk, I., Wray, D.D. (2008) An integrated study (geochemistry, stable oxygen and carbon isotopes, nannofossils, planktonic foraminifera, inoceramid bivalves, ammonites and crinoids) of the Waxachachie Dam Spillway section, north Texas: a possible boundary stratotype for the base of the Campanian stage. Cretaceous Res., v.29, pp.131–167. doi:https://doi.org/10.1016/j.cretres.2007.04.006.

    Article  Google Scholar 

  • Gilabert, V., Arz, J.A., Arenillas, I., Robinson, S.A., Ferrer, D., (2020) Influence of the Latest Maastrichtian Warming Event on planktic foraminiferal assemblages and ocean carbonate saturation at Caravaca, Spain. Cretaceous Res. 125. doi:https://doi.org/10.1016/j.cretres.2021.104844

  • Glaessner, M.F. (1945) Principles of micropaleontology. Oxford: Oxford Univ. Press and Melbourne Univ. Press, 296p. doi:https://doi.org/10.1007/3-540-31078-9-85.

    Google Scholar 

  • Govindan, A. (1972) Upper Cretaceous planktonic foraminifera from the Pondicherry area, South India. Micropal., v.18, pp.160–193.

    Article  Google Scholar 

  • Hardenbol, J., Thierry, J., Farley, M.B., Jacquin, T., de Graciansky, P.-C., Vail, P.R. (1999) Mesozoic and Cenozoic sequence chronostratigraphic framework in European basins. In: de Graciansky P.-C., Hardenbol J., Jacquin T., Vail P.R. (Eds.), SEPM Spec. Publ., v.60, pp.3–13. doi:https://doi.org/10.2110/pec.98.02.0003.

  • Hart, M.B. (1980) The recognition of mid-Cretaceous sea-level changes by means of foraminifera. Cretaceous Res., v.1, pp.289–297. doi:https://doi.org/10.1016/0195-6671(80)90040-3.

    Article  Google Scholar 

  • Hart, M.B. (1999) The evolution and biodiversity of Cretaceous planktonic foraminifera. Geobios., v.32, pp.247–255. doi: https://doi.org/10.1016/S0016-6995(99)80038-2.

    Article  Google Scholar 

  • Hart, M.B., Bhasker, A., Watkinson, M.P. (2000) Larger foraminifera from the Upper Cretaceous of the Cauvery Basin, S.E. India. Mem. Geol. Soc. India, v.46, pp.159–171.

    Google Scholar 

  • Hart, M.B., Joshi, A., Watkinson, M.P. (2001) Mid-late Cretaceous stratigraphy of the Cauvery Basin and the development of the Eastern Indian Ocean. Jour. Geol. Soc. India, v.58, pp.217–229. http://52.172.159.94/index.php/jgsi/article/view/83875.

    Google Scholar 

  • Hönisch, B., Ridgwell, A., Schmidt, D.N., Thomas, E., Samantha J., Gibbs, S.J., Sluijs, A., Zeebe, R., Kump, L., Martindale, R.C., Greene, S.E., Wolfgang, K., Justin Ries, J., Zachos, J.C., Royer, D.L., Stephen Barker, S., Marchitto Jr., T.M., Ryan Moyer, R., Carles Pelejero, C., Patrizia Ziveri, P., Gavin L. Foster, G.L., Williams, B., (2012) The Geological Record of Ocean Acidification. Science, v.335(6072), pp.1058–1063. doi:https://doi.org/10.1126/science.1208277.

    Article  Google Scholar 

  • Huber, B.T., Norris, R.D., MacLeod, K.G. (2002) Deep-sea paleotemperature record of extreme warmth during the Cretaceous. Geology, v.30, pp.123–126. doi: https://doi.org/10.1130/0091-7613.

    Article  Google Scholar 

  • Huber, B.T., MacLeod, K.G., Tur, A.N. (2008) Chronostratigraphic framework for upper Campanian-Maastrichtian sediments on the Blake Nose (Subtropical North Atlantic) Jour. Foramini. Res., v.38, pp.162–182. doi:https://doi.org/10.2113/gsjfr.38.2.162.

    Article  Google Scholar 

  • Hull, P.M., Bornemann, A., Penman, D.E., Henehan, M.J., Norris, R.D., Wilson, P.A., Blum, P., Alegret, L., Batenburg, S.J., Bown, P.R., Bralower, T.J., Cournede, C., Deutsch, A., Donner, B., Friedrich, O., Jehle, S., Kim, H., Kroon, D., Lippert, P.C., Loroch, D., Moebius, I., Moriya, K., Peppe, D.J., Ravizza, G.E., R-ohl, U., Schueth, J.D., Sepúlveda, J., Sexton, P.F., Sibert, E.C., Sliwinska, K.K., Summons, R.E., Thomas, E., Westerhold, T., Whiteside, J.H., Yamaguchi, T., Zachos, J.C. (2020) On impact and volcanism across the Cretaceous-Paleogene boundary. Science, v.367, pp.266–272. doi:https://doi.org/10.1126/science.aay5055.

    Article  Google Scholar 

  • Jarvis, I, Mabrouk, A, Moody, R.T.J., Cabrera, de. S. (2002) Late Cretaceous (Campanian) carbon isotope events, sea-level change and correlation of the Tethyan and Boreal realms. Palaeogeogr. Palaeoclimatol. Palaeoecol. v.188, pp.215–248. doi:https://doi.org/10.1016/S0031-0182(02)00578-3.

    Article  Google Scholar 

  • Jenkyns, H.C., Forster, A., Schouten, S., Damste, J.S. (2004) High temperatures in the Late Cretaceous Arctic Ocean. Nature, v.432, pp.888–892. doi:https://doi.org/10.1038/nature03143.

    Article  Google Scholar 

  • Jiang, S.J., Bralower, T.J., Patzkowsky, M.E., Kump, L.R., Schueth, J.D. (2010) Geographic controls on nannoplankton extinction across the 561 Cretaceous/Palaeogene boundary. Nature Geosciences, v.3(4), pp.280–285. doi:https://doi.org/10.1038/ngeo775.

    Article  Google Scholar 

  • Johnson, B.D., Powell, C. McA and Veevers, J.J. (1976) Spreading history of the eastern Indian Ocean and Greater India’s northward flight from Antarctica and Australia. Bull. Geol. Soc. Amer., v.87(2), pp.1560–1566.

    Article  Google Scholar 

  • Jones, J.D. (1956) Introduction to microfossils. Haeper’s Geoscience Series, Carey Croneis (Ed.), New York, pp.7–18. doi: https://doi.org/10.1038/nature03143.

  • Jung, C., Voigt S., Friedrich O., Koch M.C., Frank M. (2013) Campanian-Maastrichtian Ocean circulation in the tropical Pacific. Paleoceano., v.28(3), pp.562–573. doi: https://doi.org/10.1002/palo.20051.

    Article  Google Scholar 

  • Kawahata, H., Fujita, K., Iguchi, A., Inoue, M., Iwasaki, S., Kuroyanagi, A., Maeda, A., Manaka, T., Moriya, K., Takagi, H., Toyofuku, T., Yoshimura, T., and Suzuki, A. (2019) Perspective on the response of marine calcifiers to global warming and ocean acidification- Behavior of corals and foraminifera in a high CO2 world “hothouse”, Prog. Earth Planet. Sci., 6, 5. doi:https://doi.org/10.1186/s40645-018-0239-9.

    Article  Google Scholar 

  • Keller, G. (1989) Extinction, Survivorship and Evolution of Planktic Foraminifera across the Cretaceous/Tertiary Boundary at E1 Kef, Tunisia. Marine Micropaleont., v.13, pp.239–263. doi:https://doi.org/10.1016/0377-8398(88)90005-9.

    Article  Google Scholar 

  • Keller, G. (2001) The End-Cretaceous mass extinction in the marine realm: Year 2000 assessment. Planet. Space Sci., v.49, pp.817–830. doi:https://doi.org/10.1016/S0032-0633(01)00032-0.

    Article  Google Scholar 

  • Keller, G., Punekar, J., Mateo, P. (2016) Upheavals during the late Maastrichtian: Volcanism, climate and faunal events preceding the end-Cretaceous mass extinction. Palaeogeo., Palaeoclimat., Palaeoeco., v.441, pp.137–151. doi:https://doi.org/10.1016/j.palaeo.2015.08.025

    Article  Google Scholar 

  • Kump, L.R., Bralower, T.J., Ridgwell, A. (2009) Ocean Acidification in Deep Time. Oceanography, v.22(4). doi.:https://doi.org/10.5670/oceanog.2009.100.

  • Leckie, R.M. (1989) A paleoceanographic model for the early evolutionary history of planktonic foraminifera. Palaeogeo. Palaeoclimat. Palaeoecol., v.73, pp.107–138. doi:https://doi.org/10.1016/0031-0182(89)90048-5.

    Article  Google Scholar 

  • Li L., Keller, G. (1998a) Maastrichtian climate, productivity and faunal turnovers in planktonic foraminifera in South Atlantic DSDP sites 525A and 21. Marine Micropaleontol., v.33, pp.55–86. doi: https://doi.org/10.1016/S0377-8398(97)00027-3

    Article  Google Scholar 

  • Li L., Keller, G. (1998b) Diversification and extinction in Campanian-Maastrichtian planktonic foraminifera of North western Tunisia. Eclogae Geol Helv, v.91, pp.75–102.

    Google Scholar 

  • Li, L., Keller, G. (1999) Variability in Late Cretaceous and deep waters: evidence from stable isotopes, Mar. Geol., v.161, pp.171–190.

    Google Scholar 

  • Li, L., Keller, G., Stinnesbeck, W. (1999) The Late Campanian and Maastrichtian in northwestern Tunisia: paleoenvironmental inferences from lithology, macrofauna and benthic foraminifera. Cretaceous Res., v.20, pp.31–252. doi:https://doi.org/10.1006/cres.1999.0148.

    Article  Google Scholar 

  • Li, L., Keller, G., Adatte, T., Stinnesbeck, W. (2000) Late Cretaceous Sea level changes in Tunisia: A multidisciplinary approach. Geol. Soc. London, v.157, pp.447–458. doi:https://doi.org/10.1144/jgs.157.2.447.

    Article  Google Scholar 

  • Linnert, C., Robinson, S.A., Lees, J.A., Brown, R., Pérez-Rodríguez, I., Petrizzo, M.R., Falzoni, F., Littler, K., Arz, A., Russel, E.E. (2014) Evidence for global cooling in the Late Cretaceous. Nature Commun., v.5, 4194. doi:https://doi.org/10.1038/ncomms5194.

    Article  Google Scholar 

  • MacLeod, N., Keller, G. (1994) Comparative biogeographic analysis of planktonic foraminiferal survivorship across the Cretaceous/Tertiary (K/T) boundary; Paleobiology, v.20, pp.143–177. doi:https://doi.org/10.1017/S0094837300012653.

    Article  Google Scholar 

  • MacLeod, K.G., Huber, B.T., Ward P.D. (1996) The biostratigraphy and paleobiogeography of Maastrichtian inoceramids, In: G. Ryder, D. Fastovsky, and S. Gartner (Eds.), The Cretaceous-Tertiary Event and Other Catastrophes in Earth History. Geol. Soc. Amer., Spec Paper, 307, pp.361–373.

  • MacLeod, K.G., Huber, B.T., Isaza Londono, C. (2005) North Atlantic warming during global cooling at the end of the Cretaceous. Geology, v.33, pp.437–440. doi:https://doi.org/10.1130/G21466.1.

    Article  Google Scholar 

  • MacLeod, K.G., Londono, C.I., Martin, E.E., Berrocoso, A.J., Basak, C. (2011) Changes in North Atlantic circulation at the end of the Cretaceous greenhouse interval. Nat. Geosci., v. 4, pp.779–782. doi: https://doi.org/10.1038/ngeo1284.

    Article  Google Scholar 

  • Malarkodi, N., Mallikarjuna, U.B., Nagesh, P.C. (2006) Foraminiferal biostratigraphy of Cretaceous -Tertiary succession of Cauvery Basin, India - An overview. Anuario do Institute de Geosciences- UFRJ, v.29(1), pp.659–660.

    Google Scholar 

  • Malarkodi N., Orabi H. O., Bhargava Sharma C. S., Chethan Kumar S. (2021) Planktonic foraminiferal quantitative analysis across the Campanian/Maastrichtian boundary at the Pondicherry area, Cauvery Basin, Southern India. Geol.Jour., pp.1–19. doi:https://doi.org/10.1002/gj.4322.

  • Malmgren, B.A. (1987) Differential dissolution of Upper Cretaceous planktonic foraminifera from a temperate region of the South Atlantic Ocean. Marine Micropaleontol., v.11, pp.251–271. doi:https://doi.org/10.1016/0377-8398(87)90001-6.

    Article  Google Scholar 

  • Malmgren, B. (1989) Coiling patterns in terminal Cretaceous planktonic foraminifera. Jour. Foramini. Res., v.19, pp.311–323. doi: https://doi.org/10.2113/gsjfr.19.4.311.

    Article  Google Scholar 

  • Moores, E.M. (1991) Southwest US-East Antarctic (SWEAT) connection: a hypothesis. Geology, v. 19, pp.425–428.

    Article  Google Scholar 

  • Moy, D.A., Howard, W.R., Bray, S.G., Trull, T. W. (2009) Reduced calcification in modern Southern Ocean planktonic foraminifera. v.2., pp.99.276–280, doi:https://doi.org/10.1038/NGEO460.

    Google Scholar 

  • Nederbragt, A.J. (1991) Late Cretaceous biostratigraphy and development of Heterohelicidae (planktonic foraminifera). Micropaleontol., v.37, pp.329–372. doi:https://doi.org/10.2307/1485910.

    Article  Google Scholar 

  • Odin, G.S. (2001) The Campanian-Maastrichtian boundary: definition at Tercis (Landes, SW France) principle, procedure, and proposal. In: Odin, G.S., (Ed.), The Campanian-Maastrichtian Stage Boundary: Characterisation at Tercis-les-Bains (France) and Correlation with Europe and Other Continents. Developments in Palaeontology and Stratigraphy 19. Amsterdam, the Netherlands: Elsevier, pp. 820–833. doi:https://doi.org/10.1016/s0920-5446(01)80012-1

    Google Scholar 

  • Odin, G.S., Lamaurelle, M.A. (2001) The global Campanian-Maastrichtian stage boundary. Episodes, k24, pp.229–238. doihttps://doi.org/10.18814/epiiugs/2001/v24i4/002.

    Article  Google Scholar 

  • Ogg, J. G., Agterberg, F. P., Gradstein, F. M. (2004) The Cretaceous period. In: Gradstein, F. M., Ogg, J. G. & Smith, A. G. (Eds.), A Geologic Time Scale 2004. Cambridge University Press, Cambridge, Melbourne, Madrid, Cape Town, pp.344–383.

    Google Scholar 

  • Ogg, J.G., Hinnov, L.A. (2012) Chapter 28: Cretaceous. In: Gradstein, F. M., Ogg, J. G., Schmitz, M. and Ogg, G. (eds), The Geologic Time Scale 2012. Elsevier, Oxford, Amsterdam, Waltham, pp.793–853.

    Chapter  Google Scholar 

  • Olsson, R.K., Nyong, E.E. (1984) A paleoslope model for Campanian - Lower Maastrichtian foraminifera of New Jersey and Delaware. Jour Foramini. Res., v.14, pp.50–68. doi:https://doi.org/10.2113/gsjfr.14.1.50.

    Article  Google Scholar 

  • Orr, J.C., Fabry, V.J., Aumont, O., Bopp, L., Doney, S. C., Feely, R. A., Gnanadesikan, A. (2005) Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature, v.437, pp.81–686. doi:https://doi.org/10.1038/nature04095.

    Article  Google Scholar 

  • Payandeh, S., Afghah, M., Shirazi, M.P. (2019) Biostratigraphy and lithostratigraphy of Tarbur Formation (Upper Cretaceous) in Hossein Abad section, Zagros Basin (SW of Iran). Carbonate and Evaporites, v.34, pp.931–939. doi:https://doi.org/10.1007/s13146-018-0445-y.

    Article  Google Scholar 

  • Petrizzo, M.R. (2002) Palaeoceanographic and palaeoclimatic inferences from Late Cretaceous planktonic foraminiferal assemblages from the Exmouth Plateau (ODP Sites 762 and 763, eastern Indian Ocean). Marine Micropaleont., v.45(2), pp.117–150. doi: https://doi.org/10.1016/S0377-8398(02)00020-8.

    Article  Google Scholar 

  • Petrizzo, M.R., Huber, B.T., Falzoni, F., MacLeod, K.G. (2020) Changes in biogeographic distribution patterns of southern mid-to high latitude planktonic foraminifera during the Late Cretaceous hot to cool greenhouse climate transition. Cretaceous Res., v.115 (104547). doi:https://doi.org/10.1016/j.cretres.2020.104547.

  • Powell, C. McA., Roots, S R. and Veevers, J.J. (1988) Pre-break up continental extension in East Gondwanaland and the early opening of the eastern Indian Ocean. In: Scotese, C.R. and Sager, W.W. (Eds), Mesozoic and Cenozoic plate reconstructions. Tectonophysics, v.155, pp.261–283.

  • Premoli Silva, I., Spezzaferri, S., d’Angelantonio, A. (1998) Cretaceous foraminiferal bio-isotope stratigraphy of Hole 967E and Paleogene planktonic foraminiferal biostratigraphy of Hole 966F, Eastern Mediterranean. In: Robertson A.H.F., Emeis K.-C., Richter C., Camerlenghi A. (Eds.), Proceedings of the Ocean Drilling Program, Scientific Results, v.160.

  • Puckett, T.M., Mancini, E.A. (1998) Planktic foraminiferal Globotruncanita calcarata Total Range Zone: its global significance and importance to chronostratigraphic correlation in the Gulf Coastal Plain, USA. Jour. Foramini. Res., v.28, pp.124–134.

    Google Scholar 

  • Prabhakar, K.N., Zutshi, P.L. (1993) Evolution of the southern part of Indian east coast basins. Jour. Geol. Soc. India, k41, pp.215–230.

    Google Scholar 

  • Premoli Silva, I., Sliter, W.V. (1999) Cretaceous paleoceanography: evidence from planktonic foraminiferal evolution. In: Barrera, E., Johnson, C.C. (Eds.), The Evolution of Cretaceous Ocean-Climatic System. Geol. Soc. Amer., Spec. Paper, 332, pp.301–328.

  • Price, G.D., Twichett, R.J., Wheely, J.R., Buono, G. (2013) Isotopic evidence for long term warmth in the Mesozoic. Scientific Reports. v.3, 1438. doi:https://doi.org/10.1038/srep0143.

    Article  Google Scholar 

  • Punekar, J., Mateo, P., Keller, G. (2014) Effects of Deccan volcanism on paleoenvironment and planktonic foraminifera: A global survey. Geol. Soc. Amer., Spec. Paper 505. doi: https://doi.org/10.1130/2014.2505(04).

  • Rajagopalan, N. (1965) Late Cretaceous and Early Tertiary Stratigraphy of Pondicherry, South India. Jour. Geol. Soc. India., v.6, pp.104–121.

    Google Scholar 

  • Renne, P.R., Deino, A.L., Hilgen, F.J., Kuiper, K.F., Mark, D.F., Mitchell, W.S., Morgan, L.E., Mundil, R., Smit, J. (2013) Time Scales of Critical Events Around the Cretaceous-Paleogene Boundary. Science, v.339, pp.684–687. doi:https://doi.org/10.1126/science.1230492.

    Article  Google Scholar 

  • Robaszyñski, F., Caron, M. (1995) Foraminifères planctoniques du Crétacé: Crétacé: ire de la zonation Europe-Méditerrané Bulletin de la Société Géologique de France, v.166, pp.681–692. Corpus ID: 132025390.

    Google Scholar 

  • Robaszyñski, F., Caron, M., Gonzalez D.M., Wonders, A.A.H., (1984) Atlas of Late Cretaceous Globotruncanids. Rev. Micropaléontol. v.26, pp.145–305.

    Google Scholar 

  • Robinson, S. A., Vance, D. (2012) Widespread and synchronous change in deep-ocean circulation in the North and South Atlantic during the Late Cretaceous. Paleoceano., v.27. doi:https://doi.org/10.1029/2011PA002240.

  • Robinson, S.A., Murphy, D.P., Vance, D., Thomas, D.J. (2010) Formation of “Southern Component Water” in the Late Cretaceous: evidence from Ndisotopes, Geology, v.38, pp.871–874. doi:https://doi.org/10.1130/G31165.1

    Article  Google Scholar 

  • Sames, B., Wagreich, M., Wendler, J.E., Haq, B.U., Conrad, C.P., Melinte-Dobrinescu, M., Hu X, Wendle, R. I., Wolfgring, E., Yilmaz, I.Ö., Zorina, S.O. (2015) Review: short-term sea-level changes in a greenhouse world—a view from the Cretaceous. Palaeogeo. Palaeoclimat. Palaeoeco., v. 441(3), pp.393–411. doi: https://doi.org/10.1016/j.palaeo.10.045.

    Google Scholar 

  • Sastri, V.V., Venkatachala, B.S., Narayanan, V. (1981) The evolution of the east coast of India. Palaeogeo. Palaeoclimat. Palaeoeco., v.36, pp.23–54. doi:https://doi.org/10.1016/0031-0182(81)90047-X.

    Article  Google Scholar 

  • Savin, S.M. (1977) The history of the Earth’s surface temperature during the past 100 million years. Annu. Rev. Earth. Planet Sci., v.5, pp.319–355. doi:https://doi.org/10.1146/annurev.ea.05.050177.001535.

    Article  Google Scholar 

  • Schöbel, S., Wall, H., Ganerod, M., Pandit, M.K., Rolf, C. (2014) Magnetostratigraphy and 40Ar/39Ar geochronology of the Malwa Plateau region (Northern Deccan Traps), central western India: Significance and correlation with the main Deccan Large Igneous Province sequences. Jour. Asian Earth Sci., v.89, pp.28–45. doi:https://doi.org/10.1016/j.jseaes.2014.03.022.

    Article  Google Scholar 

  • Sigal, J. (1977) Essai de zonation du Crétacé méditerranéen à l’aide des foraminifères planctoniques. Géologie Méditerranéenne, v.4, pp.99–108.

    Article  Google Scholar 

  • Sundaram, R., Henderson, R.A., Ayyasami, K., Stilwell, J.D. (2001) A lithostratigraphic revision and palaeoenvironmental assessment of the Cretaceous System exposed in the onshore Cauvery Basin, southern India. Cretaceous Research., v.22, pp.743–762. doi:https://doi.org/10.1006/cres.2001.0287.

    Article  Google Scholar 

  • Titelboim, D., Almogi-Labin, A., Herut, B., Kucera, M., Asckenazi-Polivoda, S., and Abramovich, S. (2019) Thermal tolerance and range expansion of invasive foraminifera under climate changes, Sci. Rep.-UK, v.9, pp.1–5. doi:https://doi.org/10.1038/s41598-019-40944-5.

    Google Scholar 

  • Veevers, J.J., Powell, C. McA, Roots, D. (1991) Review of seafloor spreading around Australia, I: Synthesis of the pattern of spreading. Australian Jour. Earth Sci., v.38, pp.373–389. doi:https://doi.org/10.1080/0812009910872797.

    Article  Google Scholar 

  • Voigt, S., Jung, C., Friedrich, O., Frank, M., Teschner, C., Hoffmann, J. (2013) Tectonically restricted deep-ocean circulation at the end of the Cretaceous greenhouse. Earth Planet. Sci. Lett., v.369–370, pp.169–177. doi:https://doi.org/10.1016/j.epsl.2013.03.019.

    Article  Google Scholar 

  • Wagreich, M., Summesberger, H., Kroh, A. (2009) Late Santonian bioevents in the Schattau section, Gosau Group of Austria - implications for the Santonian-Campanian boundary stratigraphy. Cretaceous Res., v.31, pp.181–191. doi:https://doi.org/10.1016/j.cretres.2009.10.003.

    Article  Google Scholar 

  • Watkinson, M.P., Hart, M. B., Joshi, A. (2007) Cretaceous tectonostratigraphy and the development of the Cauvery Basin, southeast India. Geol. Soc. London, Spec. Publ., v.13, pp.13,181–191,1. doi:https://doi.org/10.1144/1354-079307-747.

    Google Scholar 

  • Zachos, J.C., Dickens, G.R., Zeebe, R.E. (2008) An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics: Nature, v.451, pp.279–283. doi:https://doi.org/10.1038/nature06588.

    Article  Google Scholar 

Download references

Acknowledgment

We are grateful to the reviewers who contributed to greatly improve the article. Great thanks are also to the Chairman, Department of Geology, Bangalore University, Bangalore for the encouragement and facilities. We thank NIO, Goa, UVCE, Bangalore University, IISc, Bangalore and Engineering College, Tumkur, for the SEM facility. We greatly appreciate the organizations that funded our research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Malarkodi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malarkodi, N., Orabi, O.H., Sharma, C.S.B. et al. Late Campanian-Maastrichtian in Pondicherry Area (Cauvery Basin) Southern India: Bioevents and Palaeoenvironmental Inferences from Planktonic Foraminifera. J Geol Soc India 99, 697–709 (2023). https://doi.org/10.1007/s12594-023-2370-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12594-023-2370-5

Navigation