Skip to main content
Log in

Susceptibility and Management of River Bank Materials to Erosion - A Case Study of Ganga-Bhagirathi River, West Bengal, India

  • Original Article
  • Published:
Journal of the Geological Society of India

Abstract

It is very much fundamental to identify the susceptibility of river bank materials to erosion for implementing management strategies. The present paper intends to find out the susceptibility of river bank materials to erosion and it also focuses on vulnerability assessment based on susceptibility of river bank materials to erosion. A vulnerability assessment model based on susceptibility of river bank material to erosion has been used in this study. To satisfy the objectives of this study, a stretch of river Ganga-Bhagirathi in Jangipur sub-division under the district of Murshidabad has been selected. The results of the study show that aggregate stability of the soil in study area is less than 10% and the percentage of aggregated clay (less than 8%) and organic matter (less than 0.5%) in the soil are also very less. The areas categorized as high susceptibility to erosion are highly vulnerable than the rest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amézketa, E. (1999) Soil Aggregate Stability: A Review. Jour. Sustain. Agricul., v.14(2–3), pp.83–151. doi:https://doi.org/10.1300/J064v14n02_08

    Article  Google Scholar 

  • Bandyopadhaya, P.K., Saha, S., and Mallick, S. (2011) Comparison of soil physical properties between a permanent fallow and a long term rice-wheat cropping with inorganic and organic inputs in the humid Sub-tropics of Eastern India. Communications of Soil Sci. Plant Analysis, v.42(4), pp.435–449. doi:https://doi.org/10.1080/00103624.2011.542358

    Article  Google Scholar 

  • Banerjee, M. (1999) A Report on the Impact of Farakka Barrage on the Human Fabric. The social impact of erosion, pp 13–14. South Asia Network On Dams, Rivers and People, New Delhi: 110 088 India. Retrieved 5 March 2022.

  • Berettal, A.N., Silbermann, A.V., Paladino, L., Torres, D., Bassahun, D., Musselli, R., and García-Lamohte, A. (2014) Soil texture analyses using a hydrometer: modification of the Bouyoucos method. Cien. Inv. Agr, v.41(2), pp.263–271. doi: https://doi.org/10.4067/S0718-16202014000200013.

    Google Scholar 

  • Census of India. (2011a) District census hand book: Village and town dictionarypart-XII- A (20). Murshidabad, West Bengal.

  • Census of India. (2011b) District census hand book: Village and town dictionarypart-XII- B (20). Murshidabad, West Bengal.

  • Centeri, C. (2002) The role of vegetation cover in the control of soil erosion on Tihany Peninsula. Acta Botanicahungarica, v.44(3–4), 285–2. doi:https://doi.org/10.1556/ABot.44.2002-4.7

    Google Scholar 

  • Charlton, R. (2008) Fundamentals of Fluvial Geomorphology. London, United Kingdom: Routledge.

    Google Scholar 

  • Das, B., Mondal, M., Das, A. (2012). Monitoring of bank line erosion of River Ganga, Malda District, and West Bengal: Using RS and GIS compiled with statistical techniques. Internat. Jour Geomat. Geosci., v.3(1), pp.239–248.

    Google Scholar 

  • Das M., Saha S. (2022) Spatiotemporal Detection and Delineation of Bhagirathi-Hooghly River Bank Erosion Using GIS Analytics, West Bengal, India. In: Shit P.K., Pourghasemi H.R., Bhunia G.S., Das P., Narsimha A. (Eds.), Geospatial Technology for Environmental Hazards. Advances in Geographic Information Science. Springer, Cham. doi:https://doi.org/10.1007/978-3-030-75197-5_23

    Google Scholar 

  • Egashlra, K., Kaetsu, Y., Takuma, K., (1983) Aggregate stability as an index of erodibility of ando soils. Soil Sci. Plant Nutrition, v.29(4), pp.473–481.

    Article  Google Scholar 

  • Emerson, W.W. (1977). Physical properties and structure. In: Russell, J.S. and Greacen, E.L. (Eds.), Soil factors in crop production in a semi-arid environment. University of Queensland press, St. Lucia, pp.78–104.

    Google Scholar 

  • Gee, G.W., and Bauder, J.W. (1986) Particle-size Analysis. In: Klute, A. (Ed.). Methods of soil analysis: Physical and mineralogical methods. Agronomy Monograph 9 (2 ed). Madison, WI: American Society of Agronomy.

    Google Scholar 

  • Ghosh, D., Sahu, A.S. (2018). Problem of river bank failure and the condition of the erosion victims: A case study in Dhulian, West Bengal, India. Regional Science Inquiry, v.10(2), pp.205–214.

    Google Scholar 

  • Ghosh, D. and Sahu A.S. (2019a). The impact of population displacement due to river bank erosion on the education of erosion victims: a study in jangipur sub-division of murshidabad district, West Bengal, India. Bull. Geography. Socio-economic Series, v.46(46), pp.103–118. doi:https://doi.org/10.2478/bog-2019-0037

    Article  Google Scholar 

  • Ghosh, D., Sahu, A.S. (2019b) Bank Line Migration and Its Impact on Land Use and Land Cover Change: A Case Study in Jangipur Subdivision of Murshidabad District, West Bengal. Jour. Indian Soc. Remote Sensing, v. 47, pp.1969–1988. doi:https://doi.org/10.1007/s12524-019-01043-0

    Article  Google Scholar 

  • Ghosh, D., Banerjee, M., Pal, S., Mandal, M. (2022) Spatio-temporal Variation of Channel Migration and Vulnerability Assessment: A Case Study of Bhagirathi River Within Barddhaman District, West Bengal, India. In: Shit P.K., Bera B., Islam A., Ghosh S., Bhunia GS. (Eds.), Drainage Basin Dynamics. Geography of the Physical Environment. Springer, Cham. doi:https://doi.org/10.1007/978-3-030-79634-1_14

    Google Scholar 

  • Ghosh, S., Bera, B. (2022) River Raidak-I Migration Dynamics Within Himalayan Foreland Basin Applying Quaternary Sedimentological Bank Facies and Geospatial Techniques. In: Shit P.K., Bera B., Islam A., Ghosh S., Bhunia G.S. (Eds.), Drainage Basin Dynamics. Geography of the Physical Environment. Springer, Cham. doi:https://doi.org/10.1007/978-3-030-79634-1_7

    Google Scholar 

  • Ghosh, D. (2022) Effect of river bank failure on vital social institution ‘marriage’: a case study at Jangipur sub-division of Murshidabad district, West Bengal, India. Spatial Information Research. doi:https://doi.org/10.1007/s41324-022-00461-6

  • Hagerty, D.J., and Ullrich, C.R. (1981) Bank failure and erosion on the Ohio river. Engg. Geol., v.17(3), pp.141–158. doi:https://doi.org/10.1016/0013-7952(81)90080-6

    Article  Google Scholar 

  • Haque, C.E. and Zaman, M.Q. (1989) Coping with river bank erosion hazards and displacement in Bangladesh: Survival strategies and adjustments. Disasters, v.13(4), pp.300–314. doi:https://doi.org/10.1111/j.1467-7717.1989.tb00724.x

    Article  Google Scholar 

  • Igwe, C.A., Akamigbo, F.O.R. and Mbagwu, J.S.C. (1999) Chemical and mineralogical properties of soils in Southeastern Nigeria in relation to aggregate stability. Geoderma, v.92(1–2), pp.111–123. doi:https://doi.org/10.1016/S0016-7061(99)00029-4

    Article  Google Scholar 

  • Igwe, C., (2003) Erodibility of soils of the upper rainforest zone, southeastern Nigeria. Land Degradation and Development, v. 14(3), pp.323–334.

    Article  Google Scholar 

  • Igwe, C., (2005) Erodibility in relation to water dispersible clay for some soils of eastern Nigeria. Land Degrad. Develop., v. 16(1), pp.87–96.

    Article  Google Scholar 

  • Igwe, C., and Nkemakosi, J.T. (2007) Nutrient Element Contents and Cation Exchange Capacity in Fine Fractions of Southeastern Nigerian Soils in Relation to their Stability. Communications in Soil Science and Plant Analysis, v.38(9), pp.1221–1242.

    Article  Google Scholar 

  • Khatun M., Rahaman S.M., Garai S., Das P., Tiwari S. (2022) Assessing River Bank Erosion in the Ganges Using Remote Sensing and GIS. In: Shit P.K., Pourghasemi H.R., Bhunia G.S., Das P., Narsimha A. (Eds.), Geospatial Technology for Environmental Hazards. Advances in Geographic Information Science. Springer, Cham. doi:https://doi.org/10.1007/978-3-030-75197-5_22

    Google Scholar 

  • Kheiralla, K.M., and Siddeg, A.S. (2015) Control over river bank erosion: A case study of Ganetti Station, North states, Sudan. Jour. Earth Sci. Climate Change, 6 (7). doi:https://doi.org/10.4172/2157-7617.1000287

  • Kazuhiko, E., Yumi, K., and Katsutoshi, T. (1983) Aggregate stability as an index of erodibility of ando soils.Soil Sci. Plant Nutrition, v.29(4), pp.473–481. doi:https://doi.org/10.1080/00380768.1983.10434650.

    Article  Google Scholar 

  • Knighton, D. (1998) Fluvial forms and processes: A New Perspectives. London, United Kingdom: Routledge.

    Google Scholar 

  • Laha, C. and Bandyopadhyay, S. (2013) Analysis of the changing morphometry of River Ganga, shift monitoring and vulnerability analysis using space-borne techniques: A statistical approach. Internat. Jour. Scien. Res. Publ., v.3(7), pp.1–10.

    Google Scholar 

  • Lawler, D. M. (1993). The measurement of riverbank erosion and lateral channel change: a review. Earth Surface Process. Landforms, v.18(9), pp.777–821.

    Article  Google Scholar 

  • Leopold, L.B., Wolman, M.G. and Miller, J.P. (1970) Fluvial processes in Geomorphology. New York: Dover Publications, LNC.

    Google Scholar 

  • Makusa, G.P. (2012) Soil stabilization methods and materials. Luleå University of Technology Luleå, Sweden. http://www.diva-portal.org/smash/record.jsf?pid=diva2%3A997144&dswid=4242

    Google Scholar 

  • Mandal A.C., Bhunia G.S. (2022). Spatio-Temporal Variation of Morphological Characteristics in Bhagirathi River-Case Study in Murshidabad District, West Bengal (India). In: Shit P.K., Bera B., Islam A., Ghosh S., Bhunia G.S. (eds) Drainage Basin Dynamics. Geography of the Physical Environment. Springer, Cham. doi:https://doi.org/10.1007/978-3-030-79634-1_8

    Google Scholar 

  • Majumdar, S., Das, A. and Mandal, S. (2022) River bank erosion and livelihood vulnerability of the local population at Manikchak block in West Bengal, India. Environ Dev Sustain. doi:https://doi.org/10.1007/s10668-021-02046-z

  • Mbagwu, J.S.C. (1989) Specific Dispersion Energy of Soil Aggregates in Relation to Field and Laboratory-Measured Stability Indices and Physical Properties. East African Agricultural and Forestry Jour., v.54(4), pp.173–183.

    Article  Google Scholar 

  • Mbagwu, J.S.C. (2003) Aggregate stability and soil degradation in the Tropics. Lecture given at the college on Soil Physics Trieste, 246–252.

  • Mondal I., Bandyopadhyay J. (2022) Morphological Landscape Mapping of the Bhagirathi Flood Plains in West Bengal, India, Using Geospatial Technology. In: Shit P.K., Bera B., Islam A., Ghosh S., Bhunia G.S. (eds) Drainage Basin Dynamics. Geography of the Physical Environment. Springer, Cham. doi:https://doi.org/10.1007/978-3-030-79634-1_24

    Google Scholar 

  • Okagbue, C.O. and Abam, T.K.S. (1986). An analysis of stratigraphic control on river bank failure. Engg. Geol., v.22(3), pp.231–245. doi:https://doi.org/10.1016/0013-7952(86)90025-6

    Article  Google Scholar 

  • Oluyori, N.R. and Lazarus, J. (2016). Assessment of some soil erodibility indices on agricultural land uses in fadankagoma area of Jema’a local government area, Kaduna state, northern Nigeria. Jour. Environ. Pollut. Res., v.4(31), pp.31–43.

    Google Scholar 

  • Opara, C.C. (2009) Soil microaggregates stability under different land use types in southeastern Nigeria. Catena, v.79(2), pp.103–112.

    Article  Google Scholar 

  • Pal, R. Biswas, S.S., Pramanik, M.K. and Mondal, B. (2016) Bank vulnerability and avulsion modeling of the Bhagirathi-Hugli river between Ajay and Jalangi confluences in lower Ganga Plain, India. Modeling Earth Syst. Environ., v.2(2), pp.1–10. doi:https://doi.org/10.1007/s40808-016-0125-7.

    Google Scholar 

  • Panda, S. Bandyopadhyay, J. (2011) Morphodynamic Changes of Bhagirathi River at Murshidabad District Using Geoinformatics, Jour. Geographic Information System, v.3(01), pp.85–97. doi: https://doi.org/10.4236/jgis.2011.31006

    Article  Google Scholar 

  • Prakasam C., Aravinth R. (2022) Application of Numerical Modelling for Geomorphological Evolution and River Bank Shifting Part of Damodar River. In: Jha R., Singh V.P., Singh V., Roy L.B., Thendiyath R. (Eds.) Hydrological Modeling. Water Science and Technology Library, v.109. Springer, Cham. doi:https://doi.org/10.1007/978-3-030-81358-1_28

    Google Scholar 

  • Pieri, C. (1991) Fertility of Soils: A Future for Farming in the West African Savannah. Berlin, Germany: Springer Series in Physical Environment, Springer Verlag.

    Google Scholar 

  • Rudra, K. (2006) Shifting of the Ganga and land erosion in West Bengal/A socio-ecological viewpoint. West Bengal, India: Indian Institute of Management Calcutta.

    Google Scholar 

  • Sarkar, A. (2012) Practical Geography: A systematic approach. Kolkata, India: Orient Black Swan Private Limited.

    Google Scholar 

  • Schumm, S.A., Schumm, S.A., Dumont, J.F. and Holbrook, J.M. (2002) Active tectonics and alluvial rivers. Cambridge, England: Cambridge University Press.

    Google Scholar 

  • Shields Jr, F. D., Simon, A., & Steffen, L. J. (2000) Reservoir effects on downstream river channel migration. Environ. Conserv., v.27(1), pp.54–66.

    Article  Google Scholar 

  • Sahu, A.S. (2014) Coastal geo-synthetics protection-an environmental appraisal. Indian Jour. Spatial Sci., v.5(2), pp55–61.

    Google Scholar 

  • Singh, D.S. and Awasthi, A. (2010) Natural hazards in Gharghara river area, Ganga plain, India. Natural Hazards, v.57(2), pp.213–225. doi:https://doi.org/10.1007/s11069-010-9605-7

    Article  Google Scholar 

  • Singh, M.J. and Khera, K.L. (2008). Soil erodibility indices under different land uses in lower Shiwaliks. Tropical Ecology, v.49(2), pp.113–119.

    Google Scholar 

  • Smerdon, E.T. and Beasley, R.P. (1959) The tractive force theory applied to stability of open channels in cohesive soils. Columbia, Missouri: University of Missouri.

    Google Scholar 

  • Thakur, P.K., Chalantika L., Salui, Aggarwal, S.P. (2012) River bank erosion hazard study of river Ganga, upstream of Farakka barrage using remote sensing, Natural Hazards, v.61(3), pp.967–987 doi: https://doi.org/10.1007/s11069-011-9944-z

    Article  Google Scholar 

  • Walkley, A. and Black, I.A. (1934) An Examination of the Degtjareff Method for Determining Soil Organic Matter and a Proposed Modification of the Chromic Acid Titration Method. Soil Science, v.37, pp.29–38. doi:https://doi.org/10.1097/00010694-193401000-00003.

    Article  Google Scholar 

Download references

Acknowledgement

Authors are greatly thankful to Dr. Prasanta Kumar Bandyopadhyay, Professor, the Department of Agricultural Chemistry and Soil Science, BCKV, Mohanpur, Nadia, for his cooperation during this research. We are also thankful to the editors and reviewers for their comments in up-gradation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Debika Ghosh or Abhay Sankar Sahu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosh, D., Sahu, A.S. Susceptibility and Management of River Bank Materials to Erosion - A Case Study of Ganga-Bhagirathi River, West Bengal, India. J Geol Soc India 99, 688–696 (2023). https://doi.org/10.1007/s12594-023-2369-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12594-023-2369-y

Navigation