Skip to main content

Advertisement

Log in

Estimation of Soil Erosion Using RUSLE Model and GIS Tools: A Study of Chilika Lake, Odisha

  • Original Article
  • Published:
Journal of the Geological Society of India

Abstract

Chilika Lake is the largest coastal lagoon on the eastern coast of India. The aerial extension of the lake fluctuates between 1165 km2 to 906 km2. The opening of new inlet into the lake has enriched its biodiversity but also has increased the rate of siltation, which inturn affected the lake’s water holding capacity, causing ecological repercussions and impacting its flora and fauna. The RUSLE model integrated with remote sensing and GIS techniques was used to assess the soil loss in watershed of Chilika Lake. The model takes into account various factor viz. Crop/cover management factor (C), Soil erodibility factor (K), slope length (L), Conservation support practice factor (P), Rainfall erosivity factor (R), and steepness factor (S) to estimate potential soil loss. The results of the study reveal that 486.92 km2 i.e., 73.16% area of the Chilika watershed falls under least risk category of soil erosion, 44.17 km2 (6.6%) under moderate category, while, about 11% is at high, 8.8% at very high, and 0.043 at severe risk of soil erosion. The analysis estimates the annual average soil loss rate in the catchment of Chilika Lake to be 32.41 ton/ha/yr. The raster layers developed to study spatial soil loss indicate that the catchment of the lake is under the grip of soil erosion and siltation problems. Therefore, the study recommends immediate action of conservation and management planning processes to save the lake from further degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ajmal, U., Jamal, S., Ahmad, W.S., Ali, M.A. and Ali, M.B. (2021) Waterborne diseases vulnerability analysis using fuzzy analytic hierarchy process: a case study of Azamgarh city, India. Modeling Earth Syst. Environ., v.8(1), pp.1–27. doi:https://doi.org/10.1007/s40808-021-01237-x

    Google Scholar 

  • Anderson, J.R. (1976) A land use and land cover classification system for use with remote sensor data (Vol. 964). US Government Printing Office

  • Ashiagbor, G., Forkuo, E.K., Laari, P. and Aabeyir, R. (2013) Modeling soil erosion using RUSLE and GIS tools. Internat. Jour Remote Sens. Geosci., v.2(4), pp.1–17.

    Google Scholar 

  • Behera, D. K., Saxena, M.R. and Ravi Shankar, G. (2017) Decadal landuse and landcover change dynamics in east coast of india-case study on Chilika lake. Indian Geograph Jour., v.93(1), pp.73–82.

    Google Scholar 

  • Borrelli, P., Robinson, D.A., Panagos, P., Lugato, E., Yang, J.E., Alewell, C. and Ballabio, C. (2020) Land use and climate change impacts on global soil erosion by water (2015–2070). Proc. National Acad. Sci., v.117(36), pp.21994–22001.

    Article  Google Scholar 

  • Chakrabortty, R., Pal, S.C., Sahana, M., Mondal, A., Dou, J., Pham, B.T. and Yunus, A.P. (2020) Soil erosion potential hotspot zone identification using machine learning and statistical approaches in eastern India. Natural Hazards, v.104(2), pp.1259–1294.

    Article  Google Scholar 

  • Chalise, D., Kumar, L., Shriwastav, C.P. and Lamichhane, S. (2018) Spatial assessment of soil erosion in a hilly watershed of Western Nepal. Environ. Earth Sci., v.77(19), pp.685.

    Article  Google Scholar 

  • Cohen, J. (1968) Weighted kappa: nominal scale agreement provision for scaled disagreement or partial credit. Psychological Bull., v.70(4), pp.213.

    Article  Google Scholar 

  • Dai, Q., Liu, Z., Shao, H. and Yang, Z. (2015) Karst bare slope soil erosion and soil quality: a simulation case study. Solid Earth, v.6(3), pp.985–995.

    Article  Google Scholar 

  • Deng, L., Kim, D.G., Li, M., Huang, C., Liu, Q., Cheng, M., … & Peng, C. (2019) Land-use changes driven by ‘Grain for Green’program reduced carbon loss induced by soil erosion on the Loess Plateau of China. Global and Planetary Change, v.177, pp.101–115.

    Article  Google Scholar 

  • Didoné, E.J., Minella, J.P.G. and Evrard, O. (2017) Measuring and modelling soil erosion and sediment yields in a large cultivated catchment under no-till of Southern Brazil. Soil and Tillage Res., v.174, pp.24–33.

    Article  Google Scholar 

  • El Garouani, A., Chen, H., Lewis, L., Tribak, A. and Abharour, M. (2008) Mapping of land use and net erosion from satellite images and sig idrisi in northeastern Morocco. Remote Sensing, v.8(3), pp.193–201.

    Google Scholar 

  • Ganaie, T.A., Jamal, S. and Ahmad, W.S. (2020) Changing land use/land cover patterns and growing human population in Wular catchment of Kashmir Valley, India. GeoJournal, v.86(4), pp.1–18.

    Google Scholar 

  • Ganasri, B.P. and Ramesh, H. (2016) Assessment of soil erosion by RUSLE model using remote sensing and GIS-A case study of Nethravathi Basin. Geosci. Front., v.7(6), pp.953–961.

    Article  Google Scholar 

  • Gelagay, H.S. and Minale, A.S. (2016) Soil loss estimation using GIS and Remote sensing techniques: A case of Koga watershed, Northwestern Ethiopia. Internat. Soil Water Conserv. Res., v.4(2), pp.126–136.

    Article  Google Scholar 

  • Ionita, I., Fullen, M.A., Zgbobicki, W. and Poesen, J. (2015) Gully erosion as a natural and human-induced hazard. Natural Hazards, v.79(1), pp.1–5.

    Article  Google Scholar 

  • Jabbar, M.T. (2003) Application of GIS to estimate soil erosion using RUSLE. Geo-Spatial Inform. Sci., v.6(1), pp.34–37.

    Article  Google Scholar 

  • Jamal, S. and Ahmad, W.S. (2020) Assessing land use land cover dynamics of wetland ecosystems using Landsat satellite data. SN Appl. Sci., v.2(11), pp.1–24.

    Article  Google Scholar 

  • Jamal, S., Ahmad, W. S., Ajmal, U., Aaquib, M., Ali, M.A., Ali, M.B. and Ahmed, S. (2022a) An integrated approach for determining the anthropogenic stress responsible for degradation of a Ramsar Site-Wular Lake in Kashmir, India”. Marine Geodesy, (accepted), pp.1–18. doi:https://doi.org/10.1080/01490419.2022.2034686

  • Jamal, S., Malik, I.H., and Ahmad, W.S. (2022b) Dynamics of Urban Land Use and Its Impact on Land Surface Temperature (LST) in Aligarh City, Uttar Pradesh. In: Re-envisioning Advances in Remote Sensing (pp. 25–40). CRC Press. doi:https://doi.org/10.1201/9781003224624

  • Jhingran, V.G., and Natarajan, A.V. (1969) Study of the fishery and fish population of the Chilika lake during the period 1957–65. Jour. Inland Fish Soc. India, v.1, pp.47–126

    Google Scholar 

  • Kamaludin, H., Lihan, T., Rahman, Z.A., Mustapha, M.A., Idris, W. M. R., & Rahim, S. A. (2013) Integration of remote sensing, RUSLE and GIS to model potential soil loss and sediment yield (SY). Hydrology & Earth System Sciences Discussions, v.10(4), pp.4567–4596

    Google Scholar 

  • Karaburun, A. (2010) Estimation of C factor for soil erosion modeling using NDVI in Buyukcekmece watershed. Ozean Jour. Appl. Sci., v.3(1), pp.77–85.

    Google Scholar 

  • Kim, H.S. and Julien, P.Y. (2006) Soil erosion modeling using RUSLE and GIS on the IMHA Watershed. Water Engg. Res., v.7(1), pp.29–41.

    Google Scholar 

  • Liu, H., Zhang, T., Liu, B., Liu, G. and Wilson, G. V. (2013) Effects of gully erosion and gully filling on soil depth and crop production in the black soil region, northeast China. Environ. Earth Sci., v.68(6), pp.1723–1732.

    Article  Google Scholar 

  • Liu, J., and Liu, H. (2020) Soil erosion changes during the last 30 years and contributions of gully erosion to sediment yield in a small catchment, southern China. Geomorphology, v.368, 107357.

    Article  Google Scholar 

  • Liu, S. L., Dong, Y. H., Li, D., Liu, Q., Wang, J. and Zhang, X. L. (2013) Effects of different terrace protection measures in a sloping land consolidation project targeting soil erosion at the slope scale. Ecolog. Engg., v.53, pp.46–53.

    Article  Google Scholar 

  • Millward, A.A. and Mersey, J.E. (1999) Adapting the RUSLE to model soil erosion potential in a mountainous tropical watershed. Catena, v.38(2), pp.109–129.

    Article  Google Scholar 

  • Mohammad, A.G. and Adam, M.A. (2010) The impact of vegetative cover type on runoff and soil erosion under different land uses. Catena, v.81(2), pp.97–103.

    Article  Google Scholar 

  • Nayak, G. K., Rao, C., & Rambabu, H. V. (2006) Aeromagnetic evidence for the arcuate shape of Mahanadi Delta, India. Earth, Planets and Space, v.58(8), pp.1093–1098.

    Article  Google Scholar 

  • Nunes, A.N., Coelho, C.D.O. A., De Almeida, A.C. and Figueiredo, A. (2010) Soil erosion and hydrological response to land abandonment in a central inland area of Portugal. Land Degradation & Development, v.21(3), pp.260–273.

    Article  Google Scholar 

  • Opeyemi, O. A., Abidemi, F. H. and Victor, O.K. (2019) Assessing the impact of soil erosion on residential areas of Efon-Alaaye Ekiti, Ekiti-State, Nigeria. Int. Jour. Environ. Plan. Managmt., v.5(1), pp.23–31.

    Google Scholar 

  • Owojori, A., and Xie, H. (2005) Landsat image-based LULC changes of San Antonio, Texas using advanced atmospheric correction and object-oriented image analysis approaches. In 5th international symposium on remote sensing of urban areas, Tempe, AZ.

  • Panagos, P., Borrelli, P., Meusburger, K., Yu, B., Klik, A., Lim, K. J., … and Sadeghi, S.H. (2017) Global rainfall erosivity assessment based on high temporal resolution rainfall records. Scientific Reports, 7(1), pp.1–12.

    Article  Google Scholar 

  • Panigrahi, S., Wikner, J., Panigrahy, R.C., Satapathy, K.K., and Acharya, B.C. (2009) Variability of nutrients and phytoplankton biomass in a shallow brackish water ecosystem (Chilika Lagoon, India). Limnology, v.10(2), pp.73–85.

    Article  Google Scholar 

  • Pattnaik, S. (2008) Conservation of environment and protection of marginalized of the fishing community of Chilika in Orissa, India. Jour. Hum. Ecol., v.22, pp.1–12

    Google Scholar 

  • Peroviæ, V., •ivotiæ, L., Kadoviæ, R., Đorðeviæ, A., Jaramaz, D., Mrviæ, V. and Todoroviæ, M. (2013) Spatial modelling of soil erosion potential in a mountainous watershed of South-eastern Serbia. Environ. Earth Sci., v.68(1), pp.115–128.

    Article  Google Scholar 

  • Poesen, J., Nachtergaele, J., Verstraeten, G., and Valentin, C. (2003) Gully erosion and environmental change: importance and research needs. Catena, v.50(2–4), pp.91–133.

    Article  Google Scholar 

  • Prosdocimi, M., Cerdà, A. and Tarolli, P. (2016) Soil water erosion on Mediterranean vineyards: A review. Catena, v.141, pp.1–21.

    Article  Google Scholar 

  • Renard, K.G. (1997) Predicting soil erosion by water: a guide to conservation planning with the Revised Universal Soil Loss Equation (RUSLE). United States Government Printing.

  • Sahana, M., Rihan, M., Deb, S., Patel, P.P., Ahmad, W.S., and Imdad, K. (2020) Detecting the Facets of Anthropogenic Interventions on the Palaechannels of Saraswati and Jamuna. In: Anthropogeomorphology of Bhagirathi-Hooghly River System in India. CRC Press, pp. 469–489.

  • Sahu, B.K., Pati, P. and Panigrahy, R.C. (2014) Environmental conditions of Chilika Lake during pre and post hydrological intervention: an overview. Jour. Coastal Conserv., v.18(3), pp.285–297.

    Article  Google Scholar 

  • Satyanarayana Ch (1999) Hydrographic and phytoplankton characteristics of Chilka Lake, a brackish water lagoon, on the east coast of India. PhD thesis, Andhra University, Visakhapatnam, India Schmidt, J. (Ed.). (2000) Soil Erosion: Application of physically based models. Springer Science & Business Media.

  • Shin, G.J. (1999) The analysis of soil erosion analysis in a watershed using GIS. Department of Civil Engineering, Gang-won National University, Gangwon-do, South Korea, Ph. D. dissertation.

    Google Scholar 

  • Steinhoff-Knopp, B., Kuhn, T.K. and Burkhard, B. (2021) The impact of soil erosion on soil-related ecosystem services: development and testing a scenario-based assessment approach. Environ. Monit. Assess., v.193(1), pp.1–18.

    Google Scholar 

  • Terranova, O., Antronico, L., Coscarelli, R. and Iaquinta, P. (2009) Soil erosion risk scenarios in the Mediterranean environment using RUSLE and GIS: an application model for Calabria (southern Italy). Geomorphology, v.112(3–4), pp.228–245.

    Article  Google Scholar 

  • Thomas, J., Joseph, S. and Thrivikramji, K.P. (2018) Assessment of soil erosion in a tropical mountain river basin of the southern Western Ghats, India using RUSLE and GIS. Geosci. Front., v.9(3), pp.893–906.

    Article  Google Scholar 

  • Vanwalleghem, T., Laguna, A., Giráldez, J.V., and Jiménez-Hornero, F.J. (2010) Applying a simple methodology to assess historical soil erosion in olive orchards. Geomorphology, v.114(3), pp.294–302.

    Article  Google Scholar 

  • Williams, J., Nearing, M., Nicks, A., Skidmore, E., Valentin, C., King, K., and Savabi, R. (1996) Using soil erosion models for global change studies. Jour. Soil Water Conserv., v.51(5), pp.381–385.

    Google Scholar 

  • Wischmeier, W.H. and Smith, D.D. (1965) Predicting rainfall-erosion losses from cropland east of the Rocky Mountains.

  • Wischmeier, W.H. and Smith, D.D. (1978) Predicting rainfall erosion losses: a guide to conservation planning (No. 537). Department of Agriculture, Science and Education Administration.

  • Wuepper, D., Borrelli, P. and Finger, R. (2020) Countries and the global rate of soil erosion. Nature Sustainability, v.3(1), pp.51–55.

    Article  Google Scholar 

  • Zhao, G., Mu, X., Wen, Z., Wang, F. and Gao, P. (2013) Soil erosion, conservation, and eco environment changes in the Loess Plateau of China. Land Degradation & Development, v.24(5), pp.499–510.

    Article  Google Scholar 

Download references

Acknowledgements

Authors are grateful to the anonymous reviewers for their valuable suggestions for improving the overall quality of the research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wani Suhail Ahmad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Behera, D.K., Jamal, S., Ahmad, W.S. et al. Estimation of Soil Erosion Using RUSLE Model and GIS Tools: A Study of Chilika Lake, Odisha. J Geol Soc India 99, 406–414 (2023). https://doi.org/10.1007/s12594-023-2324-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12594-023-2324-y

Navigation