Skip to main content
Log in

Role of Depleted-MORB Mantle in the Genesis of Basalts from the Neoarchean Eastern Felsic Volcanic Terrane of the Sandur Greenstone belt, Dharwar Craton, India

  • Original Article
  • Published:
Journal of the Geological Society of India

Abstract

The mafic volcanic rocks from the eastern felsic volcanic terrane (EFVT) of the Neoarchean Sandur greenstone belt of Western Dharwar Craton (WDC) are studied to evaluate their geochemical characteristics and tectonic implications. Characterised as subalkaline, tholeiitic basalts, they display moderate SiO2 (49.82–53.74 wt.%), Al2O3 (9.08–15.91 wt.%), TiO2 (0.25–0.66 wt.%) and total alkalies (Na2O+K2O= 0.60–3.97 wt.%) with Mg# ranging from 37–55 at low Cr (7–33 ppm), Ni (8–24 ppm) and V (252–612 ppm). Their rare earth and trace element patterns are coherent exhibiting moderate fractionation (La/Yb=0.16–1.09), slight negative Eu anomalies indicating limited plagioclase fractionation (Eu/Eu*= 0.69–0.96), negative Nb, Ta, Ti and Zr-Hf anomalies revealing their arc signatures. The Nb-Th and Zr-Y relationships of these basalts suggest their derivation from the partial melting of depleted mantle in an intra-oceanic arc setting. Trace element modelling of these basalts indicates their genesis by ∼15% partial melting of depleted MORB-mantle and depletion of the source is attributed to previous melting events. These basalts are geochemically similar with the depleted arc and forearc basalts of the Phanerozoic Tonga and Izu-Bonin-Mariana arcs emphasising the operation of analogous tectonic processes during the Archean era.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bogaard, F.J.P. and Wörner, G. (2003) Petrogenesis of Basanitic to Tholeiitic Volcanic Rocks from the Miocene Vogelsberg, Central Germany. Jour. Petrol., v.44, pp.569–602.

    Article  Google Scholar 

  • Bhaskar Rao, Y.J., Sivaraman, T.V., Pantulu, G.V.C., Gopalan, K. and Naqvi, S.M. (1992) Rb-Sr ages of late Archean metavolcanics and granites, Dharwar craton, South India and evidence for Early Proterozoic thermotectonic event(s). Precambrian Res., v.59(1), pp.145–170.

    Article  Google Scholar 

  • Cabanis, B. and Lecolle, M. (1989) The La/10-Y/15-Nb/8 diagram: a tool for discriminating volcanic series and highlighting the mixing and/or crustal contamination processes. In: Reports from the Academy of Sciences. Series 2, Mechanics, Physics, Chemistry, Universe Sciences, Earth Sciences, v.309, pp.2023–2029.

  • DeWit, M.J. and Ashwal, L.D. (1995) Greenstone belts: what are they? S. African Jour. Geol., v.98, pp.505–520.

    Google Scholar 

  • Ersoy, E.Y. (2013) PETROMODELER (Petrological Modeler): a Microsoft®Excel© spreadsheet program for modelling melting, mixing, crystallization and assimilation processes in magmatic systems. Turkish Jour. Earth Sci., v.22, pp.115–125.

    Google Scholar 

  • Falloon, T.J., Meffre, S., Crawford, A.J., Hoernle, K., Hauff, F., Bloomer, S.H. and Wright, D.J. (2014) Cretaceous fore-arc basalts from the Tonga arc: Geochemistry and implications for the tectonic history of the SW Pacific. Tectonophysics, v.630, pp.21–32.

    Article  Google Scholar 

  • Foley, B.J. (2018) The dependence of planetary tectonics on mantle thermal state: applications to early Earth evolution. Philos. Trans. Royal Soc. A, v.376, 20170409.

    Article  Google Scholar 

  • Furnes, H. and Dilek, Y. (2022) Archean versus Phanerozoic oceanic crust formation and tectonics: Ophiolites through time. Geosys. Geoenv., v.1(1), 100004, doi::https://doi.org/10.1016/j.geogeo.2021.09.004

    Google Scholar 

  • Hickey-Vargas, R., Yogodzinski, G.M., Ishizuka, O., McCarthy A., Bizimis, M., Kusano, Y., Savov, I.P. and Arculus, R. (2018) Origin of depleted basalts during subduction initiation and early development of the Izu-Bonin-Mariana Island arc: Evidence from IODP expedition 351 site U1438, Amami-Sankaku basin. Geochim. Cosmochim. Acta, v.229, pp.85–111.

    Article  Google Scholar 

  • Jayananda, M., Moyen, J.F., Martin, H., Peucat, J.J., Auvray, B. and Mahabaleswar, B. (2000) Late Archaean (2550–2520 Ma) juvenile magmatism in the Eastern Dharwar craton, southern India: constraints from geochronology, Nd-Sr isotopes and whole rock geochemistry. Precambrian Res., v.99, pp.225–254.

    Article  Google Scholar 

  • Khelen, A.C., Manikyamba, C., Tang, L., Santosh, M., Subramanyam, K.S.V. and Singh, T.D. (2019) Detrital zircon U-Pb geochronology of stromatolitic carbonates from the greenstone belts of Dharwar Craton and Cuddapah basin of Peninsular India. Geosci. Front., v.11, pp.229–242.

    Article  Google Scholar 

  • Kirchenbaur, M. and Münker, C. (2015) The behaviour of the extended HFSE group (Nb, Ta, Zr, Hf, W, Mo) during the petrogenesis of mafic K-rich lavas: The Eastern Mediterranean case. Geochim. Cosmochim. Acta, v.165, pp.178–199.

    Article  Google Scholar 

  • Korenaga, J. (2013). Initiation and evolution of plate tectonics on Earth: theories and observations. Annu. Rev. Earth Planet. Sci., v.41, pp.117–51.

    Article  Google Scholar 

  • Krishna, A.K., Murthy, N.N. and Govil, P.K. (2007) Multielement analysis of soils by wavelength-dispersive X-ray fluorescence spectrometry. Atom. Spectr., v.28, pp.202.

    Google Scholar 

  • Kuno, H. (1964) Igneous Rock Series. Chemistry of the Earth’s Crust, v.2, pp.109–121.

    Google Scholar 

  • Lenardic, A. (2018) The diversity of tectonic modes and thoughts about transitions between them. Philos. Trans. Royal. Soc. A., v.376, 20170416.

    Article  Google Scholar 

  • Manikyamba, C. and Naqvi, S.M. (1995) Geochemistry of Fe-Mn formations of the Archaean Sandur schist belt, India-mixing of clastic and chemical processes at a shallow shelf. Precambrian Res., v.72, pp.69–95.

    Article  Google Scholar 

  • Manikyamba, C. and Naqvi, S.M. (1997) Mineralogy and geochemistry of Archaean greenstone belt-hosted Mn formations and deposits of the Dharwar Craton: redox potential of proto-oceans. Geol. Soc. London Spl. Pub., v.119, pp.91–103.

    Article  Google Scholar 

  • Manikyamba, C. and Kerrich, R. (2012) Eastern Dharwar Craton, India: continental lithosphere growth by accretion of diverse plume and arc terranes. Geosci. Front., v.3, pp.225–240.

    Article  Google Scholar 

  • Manikyamba, C. and Ganguly, S. (2020) Annals of Precambrian lithospheric evolution and metallogeny in the Dharwar Craton. Recent Paradigms and Perspectives, India, v.86, pp.35–54.

    Google Scholar 

  • Manikyamba, C. and Harshitha Reddy, G. (2022). Paleo-subduction zones in the Indian Cratons. Jour. Geol. Soc. India, v.98, pp.497–450.

    Article  Google Scholar 

  • Manikyamba, C., Balaram, V. and Naqvi, S.M. (1993) Geochemical signatures of polygenetic origin of a banded iron formation (BIF) of the Archaean Sandur greenstone belt (schist belt) Karnataka nucleus. India. Precambrian Res., v.61, pp.137–164.

    Article  Google Scholar 

  • Manikyamba, C., Kerrich, R., Naqvi, S.M. and Ram Mohan, M. (2004) Geochemical systematics of tholeiitic basalts from the 2.7 Ga Ramagiri-Hungund composite greenstone belt, Dharwar craton. Precambrian Res., v.134, pp.21–39.

    Article  Google Scholar 

  • Manikyamba, C., Kerrich, R., Khanna, T.C., Krishna, A.K. and Satyanarayanan, M. (2008). Geochemical systematics of komatiite-tholeiite and adakitic-arc basalt associations: the role of a mantle plume and convergent margin in formation of the Sandur Superterrane, Dharwar Craton, India. Lithos, v.106, pp.155–172.

    Article  Google Scholar 

  • Manikyamba, C., Ray, J., Ganguly, S., Singh, M.R., Santosh, M., Saha, A. and Satyanarayanan, M. (2015) Boninitic metavolcanic rocks and island arc tholeiites from the Older Metamorphic group (OMG) of Singhbhum Craton, Eastern India: Geochemical evidence for Archean subduction processes; Precambrian Res., v.271, pp.138–159.

    Article  Google Scholar 

  • Naqvi, S.M. and Rogers, J.J.W. (1987) Precambrian geology of India. Oxford University Press.

  • Naqvi, S.M., Raj, B.U., Rao, D.S., Manikyamba, C., Charan, S.N., Balaram, V. and Sarma, D.S. (2002) Geology and geochemistry of arenitequartzwacke from the Late Archaean Sandur schist belt—implications for provenance and accretion processes. Precambrian Res., v.114, pp.177–197.

    Article  Google Scholar 

  • Nutman, A.P., Chadwick, B., Krishna Rao, B. and Vasudev, V.N. (1996). SHRIMP U-Pb zircon ages of acid volcanic rocks in the Chitradurga and Sandur Groups and granites adjacent to Sandur schist belt. Jour. Geol. Soc. India, v.47, pp.153–161.

    Google Scholar 

  • Pearce, J.A. and Norry, M.J. (1979) Petrogenetic implications of Ti, Zr, Y, and Nb variations in 1057 volcanic rocks. Contrib. Mineral. Petrol., v.69, pp.33–47.

    Article  Google Scholar 

  • Peucat, J.J., Jayananda, M., Chardon, D., Capdevila, R., Fanning, C.M. and Paquette, J.L. (2013). The lower crust of the Dharwar Craton, Southern India: Patchwork of Archean granulitic domains. Precambrian Res., v.227, pp.4–28.

    Article  Google Scholar 

  • Plank, T. (2014) The chemical composition of subducting sediments. Treatise on Geochemistry, v.4, pp.607–629.

    Article  Google Scholar 

  • Qian, S., Gazel, E., Nichols, A.R.L., Cheng, H., Zhang L., Salters, V.J., Li J., Xia X. and Zhou, H. (2021) The Origin of Late Cenozoic Magmatism in the South China Sea and Southeast Asia. Geochem. Geophys. Geosys., v.22, e2021GC009686.

    Article  Google Scholar 

  • Ram Mohan, M., Piercey, S.J., Kamber, B.S. and Sarma, D.S. (2013) Subduction related tectonic evolution of the Neoarchean eastern Dharwar Craton, southern India: New geochemical and isotopic constraints. Precambrian Res., v.227, pp.204–226.

    Article  Google Scholar 

  • Reagan, M.K., Ishizuka O., Stern R.J., Kelley K.A., Ohara Y., Blichert-Toft J., Bloomer S.H., Cash J., Fryer P., Hanan B.B., Hickey-Vargas R., Ishii T., Kimura J., Peate D.W., Rowe M.C. and Woods, M. (2010) Forearc basalts and subduction 110 R. Geochim. Cosmochim. Acta, v.229, pp.85–111.

    Google Scholar 

  • Roman, A. and Arndt, N. (2019) Differentiated Archean oceanic crust: its thermal structure, mechanical stability and a test of the sagduction hypothesis. Geochim. Cosmochim. Acta. v.278, pp.65–77.

    Article  Google Scholar 

  • Saccani, E. (2015) A new method of discriminating different types of post-Archean ophiolitic 1077 basalts and their tectonic significance using Th-Nb and Ce-Dy-Yb systematics. Geosci. Front., v.6, pp.481–501.

    Article  Google Scholar 

  • Satyanarayanan, M., Balaram, V., Sawant, S.S., Subramanyam, K.S.V. and Krishna, G.V. (2014) High precision multielement analysis on geological samples by HR-ICPMS. In: 28th ISMAS Symposium Cum Workshop on Mass Spectrometry. Indian Soc. Mass Spectrom. pp.181–184.

  • Shaw, D.M. (1970) Trace element fractionation during anatexis. Geochim. Cosmochim. Acta, v.34, pp.237–243.

    Article  Google Scholar 

  • Sindhuja, C.S., Manikyamba, C., Pahari, A. and Satyanarayanan, M. (2020) Geochemistry of banded sulphidic cherts of Sandur greenstone belt, Dharwar Craton, India: Constraints on hydrothermal processes and gold mineralization. Ore Geol. Rev., v.122, pp.103529.

    Article  Google Scholar 

  • Skewes, M.A. and Stern, C.R. (1979) Petrology and geochemistry of Alkali basalts and ultramafic inclusions from the Palei-aike volcanic field in southern Chile and the origin of the Patagonian plateau lavas. Jour. Volcanol. Geotherm. Res., v.6, pp.3–25.

    Article  Google Scholar 

  • Subba Rao, D.V., Naqvi, S.M., Manikyamba, C. and Ram Mohan, M. (2001) Geological and geochemical characteristics of Banded Iron Formation hosted gold mineralisation from Copper Mountain Belt, Sandur schist belt, Dharwar Craton, Karnataka. Jour. Geol. Soc. India, pp.67–82.

  • Suresh, S.R., Basavanna, M. and Lakkundi, T.K. (2014) Geology and Geochemistry of Mafic and Felsic Volcanics of Joga (Sandur Schist Belt), Karnataka, India. Int. Jour. Earth Sci. Engg., v.7(5), pp.1637–1645.

    Google Scholar 

  • Sun, S. and McDonough, W.F. (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geol. Soc. London Spec. Publ., v.42, pp.313–345.

    Article  Google Scholar 

  • Thornton, C.P. and Tuttle, O.F. (1960) Chemistry of igneous rocks; I, Differentiation index. Amer. Jour. Sci., v.258, pp.664–684.

    Article  Google Scholar 

  • Winchester, J.A. and Floyd, P.A. (1977) Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chem. Geol., v.20, pp.325–343.

    Article  Google Scholar 

  • Workman, R. K. and Hart, S. R. (2005). Major and trace element composition of the depleted MORB mantle (DMM). Earth Planet. Sci. Lett., v.231, pp.53–72.

    Article  Google Scholar 

  • Zheng, Z. F. (2019). Subduction zone geochemistry. Geosci. Front., v.10, pp.1223–1254.

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to Dr. Prakash Kumar, Director, CSIR-NGRI for permitting us to publish this work. CM acknowledges the Emeritus Scientist project funds from the Council of Scientific and Industrial Research (CSIR). Drs. M. Satyanarayanan, S.S. Sawant, and A. Keshav Krishna are thanked for providing the geochemical data. Authors thank the anonymous reviewer for constructive suggestions and insightful comments which improved the scientific content of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Manikyamba.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reddy, G.H., Manikyamba, C. & Singh, T.D. Role of Depleted-MORB Mantle in the Genesis of Basalts from the Neoarchean Eastern Felsic Volcanic Terrane of the Sandur Greenstone belt, Dharwar Craton, India. J Geol Soc India 99, 331–337 (2023). https://doi.org/10.1007/s12594-023-2315-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12594-023-2315-z

Navigation