Skip to main content
Log in

Assessment of Metal Pollution of Overburden in a Tropical Coalfield, Ib valley, India: A Case Study

  • Original Article
  • Published:
Journal of the Geological Society of India

Abstract

Mining of Coal is one of the chief sources of power generation globally to meet the energy demand. However, the mining operations and power production leads to the generation of overburdens and fly ash in huge quantities. These became severe threat to the environment during backfilling via leaching of contaminants and forming acid mine drainages. To understand the chemical characteristics of overburden, seven locations from the Ib valley coalfield were sampled. Also, a fly ash sample was collected from NTPC, Kaniha, Odisha. Subsequently, laboratory-based experiments were conducted under controlled condition to estimate the leachate characteristics of the overburden and overburden-fly ash (30%) composite samples through various leaching agents viz., distilled water, rain water and 0.1N acetic acid. Overburden samples were found to be slightly acidic in nature, whereas fly ash was almost neutral. The mean concentration of the metals in the OBs showed a decreasing trend of Fe>Al>K>Mg>Ca>Na>Mn>Cr>Cu> Zn> Co>Ni>Cd>Pb. The leachability potential is found to be high with acetic acid followed by rainwater and distilled water. The estimated possible total metal leachate from the 0.1% (0.1219 Million tonnes) of total overburden generated during 2017–18 in Mahanadi coalfields (MCL) was found to be 0.00023%. The results from the metal indices i.e. contamination factor showed that the overburdens are critically contaminated with Se followed by Cd, As and Cu, as their associated shale have quite low values. Also the potential ecological risk (PER) for the overburdens is low if Se, Cd, and Cu are excluded.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adhikari, K. and Mal, U. (2021) Evaluation of contamination of manganese in groundwater from overburden dumps of Lower Gondwana coal mines. Environ. Earth Sci., v.80(1), pp.1–5.

    Article  Google Scholar 

  • Amos, R.T., Blowes, D.W., Bailey, B.L., Sego, D.C., Smith, L., and Ritchie, A.I.M. (2015). Waste-rock hydrogeology and geochemistry. Appl. Geochem., v.57, pp.140–156.

    Article  Google Scholar 

  • APHA, (2012). Standard methods for the examination of water and wastewater, 22nd edition, E. W. Rice, R. B. Baird, A. D. Eaton and L.S. Clesceri (Eds). American Public Health Association (APHA), American Water Works Association (AWWA) and Water Environment Federation (WEF), Washington, D.C., USA.

    Google Scholar 

  • Banfield, A.F. (1973). Surface and facility requirements, pollution and environment. In: A.B. Cummins and I.A. Given (Eds.), Mining engineering handbook, Volume 1, Section 8.2, SME Mining, New York.

    Google Scholar 

  • Baruah, B.P., Saikia, B.K., Kotoky, P., Rao, P.G. (2006) Aqueous leaching on high sulfur sub-bituminous coals, in Assam, India. Energy Fuels, v.20, pp.1550–1555. doi:https://doi.org/10.1021/ef049701y.

    Article  Google Scholar 

  • Bernd, G.L.L. and Bernd, G. (2010) Mine Wastes: Characterization, Treatment and Environmental Impacts, In: SpringerLink, ed., Springer Heidelberg, Heidelberg.

    Google Scholar 

  • Caeiro, S., Costa, M.H., Ramos, T.B., Fernandes, F., Silveira, N., Coimbra, A. (2005). Assessing heavy metal contamination in Sado Estuary sediment: An index analysis approach. Ecological Indicators, v.5, pp.151–169.

    Article  Google Scholar 

  • Cardwell, A.J., Hawker, D.W., Greenway, M. (2002). Metal accumulation in aquatic macrophytes from southeast Queensland, Australia. Chemosphere, v.48, pp.653–663. doi:https://doi.org/10.1016/s0045-6535(02)00164-9.

    Article  Google Scholar 

  • Chabukdhara, M., Singh, O.P. (2016) Coal mining in north eastern India: an overview of environmental issues and treatment approaches. Int Jour. Coal Sci. Tech., v.3, pp.87–96.

    Article  Google Scholar 

  • Chakravarty, R., Jayanthu, S., Tripathy, D.P. (2013) Study of stability of overburden dumps mixed with flyash in an opencast coal mine B Tech Thesis, National Institute of Technology Rourkela, India, pp.1–69.

    Google Scholar 

  • Chandra, D., Chaudhuri, S.G., Ghose, S. (1980) Distribution of sulphur in coal seams with special reference to the Tertiary coals of North-Eastern India. Fuel, v.59(5), pp.357–359.

    Article  Google Scholar 

  • Chaulya, S.K. and Chakraborty, M.K. (1995). Perspective of New National Policy and Environ-mental Control for Mineral Sector. In: G.S. Khuntia (Ed.), Proc. National Seminar on Status of Mineral Exploitation in India, New Delhi, India, pp.114∣123.

  • Chenery, S.R., Izquierdo, M., Marzouk, E., Klinck, B., Palumbo-Roe, B., Tye, A.M. (2012) Soil-plant interactions and the uptake of Pb at abandoned mining sites in the Rookhope catchment of the N. Pennines, UK—A Pb isotope study. Sci. Total Environ., v.433 pp.547–560

    Article  Google Scholar 

  • Cheng, J.; Shang, Y. (2015) Early Cretaceous Palynological Assemblage Sequence and Palaeoclimate Research in Zhalainuoer Coalmine, Manzhouli, Inner Mongolia. Acta Palaeontol. Sin., v.54, pp.316–341, (in Chinese with English Abstract).

    Google Scholar 

  • Cherfas, J. (1992). Trees help nature reclaim the slag heaps; New Scientist, v.14–15, pp.24–29.

    Google Scholar 

  • Chowdhury, R.A., Sarkar, D., Datta, R. (2015). Remediation of acid mine drainage impacted water. Curr. Pollut. Reports, v.1, pp.131–141. doi:https://doi.org/10.1007/s40726-015-0011-3.

    Article  Google Scholar 

  • Chugh, Y.P., Deb, D., Raju, C.B. (2000) Physical and engineering properties of coal combustion by-products. Proc the use and disposal of coal combustion by-products at coal mines: a tech. interactive forum, Morgantown, West Virginia.

  • Cutter, G.A. and Radford-Knoery, J. (1991) Determination of carbon, nitrogen, sulfur, and inorganic sulfur species in marine particles. In: D.C. Hurd and D.W. Spencer (Eds.), Marine particles: Analysis and characterization. Amer. Geophys. Union. doi:https://doi.org/10.1029/GM063p0057.

  • Daniels, W. and Zipper, C. (2010) Creation and Management of Productive Minesoils. Virginia Cooperative Extension Publications 460–121. https://pdfs.semanticscholar.org/b6fa/aa2db9e689914bc09d20167e3aaae842faaa.pdf doi:https://doi.org/10.1016/j.gsf.2016.11.014.176384556.86233093.1598592583-1963325390.1538213641

  • Dobrovol’skii, V.V., Geography of Microelements. Global Dispersion (Mysl’, Moscow, 1983) [in Russian].

    Google Scholar 

  • Vodyanitskii, Y.N. (2016) Standards for the contents of heavy metals in soils of some states. Ann. Agrar. Sci., v.14, pp.257–263. doi:https://doi.org/10.1016/j.aasci.2016.08.011.

    Article  Google Scholar 

  • Dowarah, J., Deka Boruah, H.P., Gogoi, J., Pathak, N., Saikia, N., Handique, A.K. (2009) Eco-restoration of a high-sulphur coal mine overburden dumping site in northeast India: A case study. Jour. Earth Syst. Sci., v.118(5), pp.597–608.

    Article  Google Scholar 

  • Dung, T.T.T., Cappuyns, V., Swennen, R., Phung, N.K. (2013) From geochemical background determination to pollution assessment of heavy metals in sediments and soils. Rev. Environ. Sci. Biotech., v.12, pp.335–353.

    Article  Google Scholar 

  • Dutta, M., Khare, P., Chakravarty, S., Saikia, D., Binoy, S.K. (2018) Physicochemical and elemental investigation of aqueous leaching of high sulfur coal and mine overburden from Ledo coalfield of Northeast India. Int. Jour. Coal Sci. Tech., v.5, pp.265–281. doi: https://doi.org/10.1007/s40789-018-0210-9.

    Article  Google Scholar 

  • Dutta, M., Saikia, J., Taffarel, S.R., Waanders, F.B., de Medeiros, D, Cutruneo, C.M.N.L., Silva, L.F.O., Saikia, B.K. (2017). Environmental assessment and nano-mineralogical characterization of coal, overburden and sediment from Indian coal mining acid drainage. Geosci. Front., v.8(6), pp.1285–1297. doi: https://doi.org/10.1016/j.gsf.2016.11.014.

    Article  Google Scholar 

  • Ek, A.S., Renberg, I. (2001) Heavy metal pollution and lake acidity changes caused by one thousand years of copper mining at Falun, Central Sweden. Jour. Paleolimnol., v.26(1), pp.89–107.

    Article  Google Scholar 

  • Equeenuddin, S.M. (2015) Leaching of trace elements from Indian coal. Jour. Geol. Soc. India, v.86, pp.106–120

    Article  Google Scholar 

  • Fan, X., Nie, F., Chen, Y., Wang, W. (2008) Discussion on Age and Paleo Geographical Environment of Ore Bearing Strata for Sandstone-Type Uranium Deposits in Bayanwula Area, Erlian Basin. Uranium Geol., v.24, pp.150–154.

    Google Scholar 

  • Ford, K.L. and Walker, M. (2003) Abandoned mine waste repositories: sites selection, design and cost. Technical Note 410, Denver Bureau of Land Management.

  • Gerke, H.H., Molson, J.W., Frind, E.O. (1998) Modelling the effect of chemical heterogeneity on acidification and solute leaching in overburden mine spoils. Jour. Hydrol., v.209(1), pp.166–185

    Article  Google Scholar 

  • Ghose, M.K. (2004). Effect of opencast mining on soil fertility. Jour. Sci. Ind. Res., v.63, pp.1006–1009. https://towardfreedom.org/wpcontent/uploads/2012/05/JSIR%2063%2812%29%201006-1009.pdf.

    Google Scholar 

  • Ghosh, A.B., Bajaj, J.C., Hassan, R., Singh, D. (1983) Laboratory manual for soil and water testing. Division of Soil Science and Agricultural Chemistry, IARI, New Delhi, India, pp.11–22.

    Google Scholar 

  • Gogoi, J., Pathak, N., Duarah, I., Deka Boruah, H.P., Saikia, N., Handique, A.K. (2012) Microbial activity in high-sulfur reclaimed coal mine overburden sites. Soil Sediment Contam. Int. Jour., v.21, pp.42–50. doi: https://doi.org/10.1080/15320383.2012.636774.

    Article  Google Scholar 

  • Goswami, S. (2006) Record of Lower Gondwana megafloral assemblage from Lower Kamthi Formation of Ib River Coalfield, Mahanadi Basin, Orissa. Indian Jour. Biosci., v.31, pp.115–128.

    Google Scholar 

  • Gupta, S.K., Nikhil, K. (2016) Ground water contamination in coal mining areas: a critical review. Internat. Jour. Engg. Appl. Sci., v.3(2): 257716

    Google Scholar 

  • Hakanson, L. (1980) An ecological risk index for aquatic pollution control. A sedimentological approach. Water Res., v.14(8), pp.975–1001.

    Article  Google Scholar 

  • He, Z.L., Yang, X.E., Stoffella, P.J. (2005) Trace elements in agroecosystems and impacts on the environment. Jour. Trace Elem. Med. Biol., v.19, pp.125–140. doi:https://doi.org/10.1016/j.jtemb.2005.02.010.

    Article  Google Scholar 

  • Islam, N., Rabha, S., Subramanyam, K.S., Saikia, B.K. (2021) Geochemistry and mineralogy of coal mine overburden (waste): A study towards their environmental implications. Chemosphere, v.274, 129736.

    Article  Google Scholar 

  • Iyengar, M.S., Guha, S., Bari, M.L., Lahiri, A. (1959) Proceedings of the Nature of Coal, CFRI, Jealgora, India, pp.206–214

    Google Scholar 

  • Jain, M.K., Das, A. (2017). Impact of Mine Waste Leachates on Aquatic Environment: A Review. Curr. Pollut. Rep., doi:https://doi.org/10.1007/s40726-017-0050-z.

  • Jambhulkar, H.P., Kumar M.S. (2019) Eco-restoration approach for mine spoil overburden dump through biotechnological route. Environ. Monit. Assess., v.191(12), pp.1–6.

    Article  Google Scholar 

  • Jayanthu, S., Das, S.K., Equeenuddin, S.K. (2012) Stability of fly ash and overbuden material as back filling in opencast mines -A case study, International Conference on Chemical, Civil and Environment engineering, Dubai, pp.276∣278.

  • Karfakis, M.G., Bowman, C.H., Topuz, E. (1996). Characterization of coalmine refuse as backfilling material. Geotech. Geol. Engg., v.14(2), pp.129–50.

    Article  Google Scholar 

  • Khan, S.R., Singh, S.K., Rastogi, N. (2017) Heavy metal accumulation and ecosystem engineering by two common mine site-nesting ant species: implications for pollution-level assessment and bioremediation of coal mine soil. Environ. Monit. Assess., v.189(4), pp.195.

    Article  Google Scholar 

  • Kowalska, J.B., Mazurek, R., G’siorek, M., Zaleski, T. (2018) Pollution indices as useful tools for the comprehensive evaluation of the degree of soil contamination-A review. Environ. Geochem. Health, v.40(6), pp.2395–420.

    Article  Google Scholar 

  • Kowalska, J., Mazurek, R., G’siorek, M., Setlak, M., Zaleski, T., Waroszewski, J. (2016) Soil pollution indices conditioned by medieval metallurgical activity-A case study from Krakow (Poland). Environ.l Pollut., v.218, pp.1023–36.

    Article  Google Scholar 

  • Kuranchie, F., Shukla, S., Habibi, D. (2013) Mine wastes in Western Australia and their Suitability for Embankment Construction. In: Geo-Congress. pp.1443∣1452.

  • Kusuma, G.J., Shimada, H., Sasaoka, T., Matsui, K., Nugraha, C., Gautama, R.S., Sulistianto, B. (2012) Physical and geochemical characteristics of coal mine overburden dump related to acid mine drainage generation. Memoirs of the Faculty of Engineering, Kyushu University, v.72(2), pp.23–38.

    Google Scholar 

  • Maiti, S.K. (2007) Bioreclamation of coal mine overburden dumps — with special emphasis on micronutrients and heavy metals accumulation in tree species. Environ. Monit. Assess, v.125, pp.111–122. doi: https://doi.org/10.1007/s10661-006-9244-3.

    Article  Google Scholar 

  • Maiti, S.K., Rana, V. (2017) Assessment of heavy metals contamination in reclaimed mine soil and their accumulation and distribution in Eucalyptus hybrid. Bull. Environ. Contam. Toxicol., v.98(1), pp.97–104.

    Article  Google Scholar 

  • Mazurek, R., Kowalska, J., G’siorek, M., Zadro¿ny, P, Józefowska, A., Zaleski, T. (2017). Assessment of heavy metals contamination in surface layers of Roztocze National Park Forest soils (SE Poland) by indices of pollution. Chemosphere, v.168, pp.839–850.

    Article  Google Scholar 

  • Mishra, D.P., Das, S.K. (2010) A study of physico-chemical and mineralogical properties of Talcher coal fly ash for stowing in underground coal mines. Materials Characterization, v.61(11), pp.1252–9.

    Article  Google Scholar 

  • Momodu, M.A., Anyakora, C.A. (2010) Heavy Metal Contamination of Ground Water: The Surulere Case Study. Res. Jour. Environ. Earth Sci., v.2(1), pp.39–43.

    Google Scholar 

  • Mukhopadhyay, S. and Maiti, S.K. (2011) Trace metal accumulatioG21:AD22n and natural mycorrhizal colonisation in an afforested coalmine overburden dump: a case study from India. Internat. Jour. Min., Reclam. and Environ., v.25(2), pp.187–207.

    Article  Google Scholar 

  • Müller, G. (1969) Index of geoaccumulation in sediments of the Rhine River. Geo Jour., v.2, pp.108–118.

    Google Scholar 

  • Naik, A.S., Behera, B., Shukla, U.K., Sahu, H.B., Singh, PK, Mohanty, D., Sahoo, K., Chatterjee, D. (2021) Mineralogical Studies of Mahanadi Basin coals based on FTIR, XRD and Microscopy: A Geological Perspective. Jour. Geol. Soc. India, v.97(9), pp.1019–27.

    Article  Google Scholar 

  • Naik, A.S., Singh, M.P., Volkmann, N., Singh, P.K., Mohanty, D., Kumar, D. (2016) Petrographic characteristics and paleomires of mand-raigarh coals, Mahanadi Gondwana Basin, Chhattisgarh, India. Internat. Jour. Coal Sci. Tech., v.3(2), pp.165–83.

    Article  Google Scholar 

  • Niyogi, D.K., Lewis, Jr. W.M. (2002) Effects of stress from mine drainage on diversity, biomass, and function of primary producers in mountain streams. Ecosystems, v.5, pp.554–67.

    Google Scholar 

  • Pandey, B., Agrawal, M., Singh, S. (2014) Assessment of air pollution around coal mining area: emphasizing on spatial distributions, seasonal variations and heavy metals, using cluster and principal component analysis. Atmosph. Pollut. Res., v.5(1), pp.79–86.

    Article  Google Scholar 

  • Park, J.H., Li, X., Edraki, M., Baumgartl, T., Kirsch, B. (2013) Geochemical assessments and classification of coal mine spoils for better understanding of potential salinity issues at closure. Environ. Sci. Proc. Impacts, v.15, pp.1235–1244

    Article  Google Scholar 

  • Pati, M., Mahadevan, M.R., Bera, J. (2001) Fly ash: a case study of solid waste management. Proc in environmental issues and waste management in mining and allied industries, Dept. of Mining Engineering, NIT Rourkela, February 23–24, 2001.

  • Pronab, K.B., Mrinal, K.B. (1996) Sulfur in Assam coal. Jour. Fuel Process. Tech., v.46, pp.83–97.

    Article  Google Scholar 

  • Qingjie, G., Jun, D., Yunchuan, X., Qingfei, W., Liqiang, Y. (2008) Calculating Pollution Indices by Heavy Metals in Ecological Geochemistry Assessment and a Case Study in Parks of Beijing. Jour. China Univ. Geosci., v. 19(3), pp.230–241.

    Article  Google Scholar 

  • Ratna, P.R. and Darga, K.N. (2015) CBR and Strength aspects of fly ashgranular soil mixtures. Internat. Jour. Engg. Res. General Sci., v.3(4), pp.943–953.

    Google Scholar 

  • Reddy, K.J., Wang, L., Gloss, S.P. (1995). Solubility and mobility of copper, zinc and lead in acidic environments. Plant and Soil, v.171(1), pp.53–8

    Article  Google Scholar 

  • Rutkowski, P., Diatta, J., Konatowska, M., Andrzejewska, A., Tyburski, £, Przybylski, P. (2020). Geochemical referencing of natural forest contamination in Poland. Forests, v.11(2), pp.157.

    Article  Google Scholar 

  • Ryan, P.A. (1991). Environmental effects of sediment on New Zealand streams: a review. N Z Jour. Mar. Freshw. Res., v.25, pp.207–21.

    Article  Google Scholar 

  • Saha, J.K., Panwar, N., Singh, M.V. (2013) Risk assessment of heavy metals in soil of a susceptible agro-ecological system amended with municipal solid waste compost. Jour. Indian Soc. Soil Sci., v.61, pp.15–22.

    Google Scholar 

  • Sahoo, B.P., Sahu, H.B. (2020) Assessment and Characterization of Mine Waste and Fly Ash Material for Effective Utilization in Opencast Coal mines. Internat. Jour. Recent Tech. Engg., v.9(1), pp.2490–2500

    Google Scholar 

  • Sahoo, B., Sahu, H.B. (2015) Geotechnical Investigations of Coal and Iron Ore Mine Refuge for Backfilling in Opencast Mine: A Comparative Study. Procedia Earth Planet. Sci., v. 11, pp.323–329. doi: https://doi.org/10.1016/j.proeps.2015.06.066

    Article  Google Scholar 

  • Saikia, B.K., Saikia, A., Choudhury, R., Xie, P., Liu, J., Das, T., Dekaboruah, H.P. (2016) Elemental geochemistry and mineralogy of coals and associated coal mine overburden from Makum coalfield (Northeast India). Environ. Earth Sci., v.75(8), pp.660.

    Article  Google Scholar 

  • Saikia B.K., Wang, P., Saikia, A., Gupta, U.N., Song, H., Liu, J, Wei, J. (2015). Mineralogical and elemental composition of some high sulfur Indian tertiary coals: statistical analysis of the oxides and elements. Energy Fuel, v.29, pp.1407–1420.

    Article  Google Scholar 

  • Saini, V., Gupta, R.P., Arora, M.K. (2016) Environmental impact studies in coalfields in India: a case study from Jharia coalfield. Renewable and Sustainable Energy Rev., v.53, 1222–1239.

    Article  Google Scholar 

  • Salonen, V.S., Tuovinen, N., Valpola, S. (2006) History of mine drainage impact on Lake Orija rvi algal communities, SW Finland. Jour. Paleolimnol., v.35, pp.89–303.

    Google Scholar 

  • Schroer, W.F. (1976) Chemical and physical characterization of coal overburden. Farm Res., v34, 1. https://library.ndsu.edu/ir/bitstream/handle/10365/3851/farm_34_1_2.pdf?

    Google Scholar 

  • Senapaty, A., Behera, P. (2015) Stratigraphic control of petrography and chemical composition of the lower Gondwana Coals, Ib-Valley Coalfield, Odisha, India. Jour. Geosci. Environ. Protect., v.3, pp.56–66.

    Google Scholar 

  • Shen, J., Y. Qin, J. Wang, Y. Shen, G. Wang (2018) Peat-forming environments and evolution of thick coal seam in Shengli coalfield, China: evidence from geochemistry, coal petrology, and palynology Minerals, v.8, p.82, doi:https://doi.org/10.3390/min8030082.

    Google Scholar 

  • Singh, K.N., Narzary, D. (2021) Geochemical characterization of mine overburden strata for strategic overburden-spoil management in an opencast coal mine. Environ. Challen., v.3, 100060.

    Article  Google Scholar 

  • Singh, P.K., Singh, G.P., Singh, M.P., Naik, A.S. (2013) The petrology of coals from the rampur seam-IV and the Lajkura seam, Ib River Coalfield, Mahanadi Valley, Orissa, India. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, v.17; 35(18), pp.1681–1690.

    Article  Google Scholar 

  • Singh, S.K., Thawale, P.R., Juwarkar, A.A. (2014) Sustainable reclamation of coal mine spoil dump using microbe assisted phytoremediation technology. Internat. Jour. Environ. Sci. Toxicol. Res., v.2(3), pp.43–54. http://oaji.net/articles/2015/1652-1423550008.pdf.

    Google Scholar 

  • Soni, R., Bhardwaj, S., Shukla, D.P. (2020) Various water-treatment technologies for inorganic contaminants: current status and future aspects. In: Inorganic Pollutants in Water, Elsevier, pp.273∣295.

  • Stanojevic, D., Toškovic, D., Rajkovic, M.B. (2005) Intensification of zinc dissolution process in sulphuric acid. Jour. Min. Metall. B: Metallurgy, v.41(1), pp.47–66.

    Article  Google Scholar 

  • Steinhauser, G., Adlassnig, W., Lendl, T., Peroutka, M., Weidinger, M., Lichtscheidl, I.K. (2009) Metalloid contaminated microhabitats and their biodiversity at a former antimony mining site in Schlaining, Austria. Open Environ Sci., v.3, pp.26–41.

    Article  Google Scholar 

  • Stoline, M.R., Passerp, R.N., and Barcelona, M.J. (1993) Statistical trends in groundwater monitoring data at a landfill site — A case study. Environ. Monit. Assess., v.27(3), pp.201–219.

    Article  Google Scholar 

  • Suresh, G., Sutharsan, P., Ramasamy, V., Venkatachalapathy, R. (2012) Assessment of spatial distribution and potential ecological risk of the heavy metals in relation to granulometric contents of Veeranam lake sediments, India. Ecotoxicol. Environ. Safety, v.84, pp.117–124.

    Article  Google Scholar 

  • Tapadar, S.A., Jha, D.K. (2014) Influence of open cast mining on the soil properties of ledo colliery of tinsukia district of Assam, India. Int. Jour. Sci. Res. Publ., v.5(3), pp.1–5. https://pdfs.semanticscholar.org/be90/5662c9ba9a5256685cbc438bf2e579888cf6.pdf?ga=2.

    Google Scholar 

  • USEPA (1984) Solid Waste leaching procedure, Technical response document, SW-924.

  • USEPA (1996) Acid digestion of sediments, sludges, and soils. Method 3050B, SW-846.

  • Verardo, D.I., Froelich, P.N. and Mcintyre, A. (1990) Determination of organic carbon and nitrogen in marine sediments using the Carlo Erba NA-1500 analyzer. Deep Sea Res., v.37, pp.157–165.

    Article  Google Scholar 

  • Vodyanitskii, Y.N. (2016) Standards for the contents of heavy metals in soils of some states. Ann. Agrar. Sci., v. 14, pp.257–263. doi: https://doi.org/10.1016/j.aasci.2016.08.011.

    Article  Google Scholar 

  • Wang, D., Shao, L., Zhang, Q., Ding, F., Li Z., Zhang, W. (2013) Analysis of Coal-accumulating Characteristics in the Lower Cretaceous Coal-Containing Strata of the Erlian Basin Group. Jour. China Univ. Min. Tech., v.42, pp.257–265.

    Google Scholar 

  • Wedepohl, K.H. (1995) The composition of the continental crust. Geochim. Cosmochim. Acta, v.59(7), pp.1217–1232.

    Article  Google Scholar 

  • Weil, R.R., Brady, N.C. (2017) The Nature and Properties of Soils. Pearson Prentice Hall, Harlow, London, New York, NY.

    Google Scholar 

  • Wills, BA, Napier-Munn, T. (2015) Wills’ mineral processing technology: an introduction to the practical aspects of ore treatment and mineral recovery. Chapter 16-Tailings Disposal. Butterworth-Heinemann; September 1. pp.439∣48.

  • Wong, H.K.T., Gauthier, A., Nriagu, J.O. (1999). Dispersion and toxicity of metals from abandoned gold mine tailings at Goldenville, Nova Scotia, Canada. Sci. Total Environ., v.228(1), pp.35–47.

    Article  Google Scholar 

  • Xu, Z.Q., Ni, S.J., Tuo, X.G., Zhang, C.J. (2008) Calculation of heavy metal’s toxicity coefficient in the evaluation of Potential Ecological Risk Index. Environ. Sci. Tech., v.31, pp.112–115 (in Chinese with English abstract)

    Google Scholar 

  • Zhuang, X., Querol, X., Alastuey, A., Juan, R., Plana, F., Lopez-Soler, A., Du, G., Martynov, V. V. (2006) Geochemistry and Mineralogy of the Cretaceous Wulantuga High-Germanium Coal Deposit in Shengli Coal Field, Inner Mongolia, Northeastern China. Int. Jour. Coal Geol., v.66, pp.119–136.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Director, NIT Rourkela for providing the facilities to carry out the research. The authors also, thankful to the MCL officials for the support during field visits and sampling in the Ib Valley.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vishnu Vardhan Kanuri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahoo, B.P., Sahu, H.B., Kanuri, V.V. et al. Assessment of Metal Pollution of Overburden in a Tropical Coalfield, Ib valley, India: A Case Study. J Geol Soc India 99, 37–46 (2023). https://doi.org/10.1007/s12594-023-2264-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12594-023-2264-6

Navigation