Skip to main content
Log in

Reliability Analysis for Liquefaction Risk Assessment for the City of Patna, India using Hybrid Computational Modeling

  • Original Article
  • Published:
Journal of the Geological Society of India

Abstract

In the present study, the first-order reliability method (FORM) is applied to evaluate the failure of soil deposits during seismic excitation for the city of Patna, India. Patna is emerging as one of the metro cities and the rapid infrastructure development in the city with high pace construction of road and metro services along with several smart city projects have led to immense growth in civil engineering structures. Therefore, liquefaction assessment of Patna is an important subject due to the geographical and seismic location of the city. A detailed comparative study has been performed between first-order second moment (FOSM) and advanced first-order second-moment (AFOSM) reliability methods to determine the most suitable method to evaluate the potential risk of liquefaction for Patna city. Reliability index (β) values obtained from AFOSM analysis are in true accordance with the deterministic approach and therefore can be considered as an appropriate tool for reliability analysis for this city. The analysis establishes that the city of Patna exhibits high possibilities of liquefaction failure during high-intensity earthquakes i.e. Mw = 6.5. Also, a concept of a predictive computational model developed by the hybridization of ANN and GWO algorithms to determine β value using geotechnical and seismic parameters has been proposed. The high precision and error-free performance of the ANN-GWO model provides a powerful computational tool to assist the prediction of β. The results of the study could be used to comprehend the potential risk against liquefaction and provide a novel and insightful concept of risk assessment for safe and economic construction practices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andrews, D.C. and Martin, G. R. (2000) Criteria for Liquefaction of Silty Soils. 12th World Conf. on Earthquake Engineering, pp.1–8.

  • Beyzaei, C.Z., Bray, J.D., Cubrinovski, M., Riemer, M. and Stringer, M. (2018a) Laboratory-based characterization of shallow silty soils in southwest Christchurch. Soil Dynamics and Earthquake Engineering, v.110, pp.93–109. doi:https://doi.org/10.1016/j.soildyn.2018.01.046

    Article  Google Scholar 

  • Beyzaei, C.Z., Bray, J.D., van Ballegooy, S., Cubrinovski, M. and Bastin, S. (2018b) Depositional environment effects on observed liquefaction performance in silt swamps during the Canterbury earthquake sequence. Soil Dynamics and Earthquake Engineering, v.107, pp.303–321. doi:https://doi.org/10.1016/j.soildyn.2018.01.035

    Article  Google Scholar 

  • Boulanger, R.W. and Idriss, I.M. (2006) Liquefaction Susceptibility Criteria for Silts and Clays. Jour. Geotech. Geoenviron. Engg., v.132(11), pp.1413–1426. doi:https://doi.org/10.1061/(asce)1090-0241(2006)132:11(1413)

    Article  Google Scholar 

  • Bray, J.D., Sancio, R.B., Riemer, M.F. and Durgunoglu, T. (2004) Liquefaction susceptibility of fine-grained soils. Proceedings of the 11th International Conference on Soil Dynamics and Earthquake Engineering and 3rd International Conference on Earthquake Geotechnical Engineering, pp.655–662.

  • Bray, Jonathan D. and Sancio, R.B. (2006) Assessment of the liquefaction susceptibility of fine-grained soils. Jour. Geotech. Geoenviron. Engg., v.132(9), pp.1165–1177. doi:https://doi.org/10.1061/(ASCE)1090-0241(2006)132:9(1165)

    Article  Google Scholar 

  • Cao, Z., Wang, Y. and Li, D. (2016) Probabilistic approaches for geotechnical site characterization and slope stability analysis. In Probabilistic Approaches for Geotechnical Site Characterization and Slope Stability Analysis. doi:https://doi.org/10.1007/978-3-662-52914-0

  • Chattaraj, R. and Sengupta, A. (2016) Liquefaction potential and strain dependent dynamic properties of Kasai River sand. Soil Dynam. Earthquake Engg., v.90, pp.467–475.

    Article  Google Scholar 

  • Choobbasti, A.J., Naghizaderokni, M. and Naghizaderokni, M. (2015) Reliability analysis of soil liquefaction based on standard penetration: a case study in Babol city. Icsce. http://www.sciei.org

  • Dehghanbanadaki, A., Khari, M., Amiri, S.T. and Armaghani, D.J. (2021) Estimation of ultimate bearing capacity of driven piles in c-φ soil using MLP-GWO and ANFIS-GWO models: a comparative study. Soft Computing, v.25(5), pp.4103–4119. doi:https://doi.org/10.1007/s00500-020-05435-0

    Article  Google Scholar 

  • Deng, S., Wang, X., Zhu, Y., Lv, F. and Wang, J. (2019) Hybrid Grey Wolf Optimization Algorithm-Based Support Vector Machine for Groutability Prediction of Fractured Rock Mass. Jour. Computing in Civil Engg., v.33(2), 4018065.

    Article  Google Scholar 

  • Ditlevsen, O. and Bjerager, P. (1986) Methods of structural systems reliability. Structural Safety, v.3(3–4), pp.195–229.

    Article  Google Scholar 

  • Ditlevsen, O. and Bjerager, P. (1989) Plastic reliability analysis by directional simulation. Jour. Engg. Mech., v.115(6), pp.1347–1362.

    Article  Google Scholar 

  • el Amin Bourouis, M., Zadjaoui, A. and Djedid, A. (2020) Contribution of two artificial intelligence techniques in predicting the secondary compression index of fine-grained soils. Innovative Infrastructure Solutions, v.5(3), pp.1–11.

    Google Scholar 

  • Ganji, A. and Jowkarshorijeh, L. (2012) Advance first order second moment (AFOSM) method for single reservoir operation reliability analysis: A case study. Stochastic Environmental Research and Risk Assessment, v.26(1), pp.33–42. doi:https://doi.org/10.1007/s00477-011-0517-1

    Article  Google Scholar 

  • Ghani, S. and Kumari, S. (2021a) Effect of Plasticity Index on Liquefaction Behavior of Silty Clay. In: Lecture Notes in Civil Engineering: Vol. 119 LNCE (pp. 289–298). doi:https://doi.org/10.1007/978-981-33-4001-5_26

    Article  Google Scholar 

  • Ghani, S. and Kumari, S. (2021b) Insight into the Effect of Fine Content on Liquefaction Behavior of Soil. Geotech. Geol. Engg., v.39(1). doi:https://doi.org/10.1007/s10706-020-01491-3

  • Ghani, S. and Kumari, S. (2021c) Liquefaction study of fine-grained soil using computational model. Innovative Infrastructure Solutions, v.6(2). doi:https://doi.org/10.1007/s41062-020-00426-4

  • Ghani, S. and Kumari, S. (2021d) Liquefaction susceptibility of high seismic region of Bihar considering fine content. In: Basics of Computational Geophysics (pp. 105–120). doi:https://doi.org/10.1016/b978-0-12-820513-6.00012-6

  • Ghani, S. and Kumari, S. (2021e). Probabilistic Study of Liquefaction Response of Fine-Grained Soil Using Multi-Linear Regression Model. Jour. Instit. Engineers (India): Series A, v.102(3), pp.783–803. doi:https://doi.org/10.1007/s40030-021-00555-8

    Google Scholar 

  • Ghani, S., Kumari, S. and Bardhan, A. (2021) A novel liquefaction study for fine-grained soil using PCA-based hybrid soft computing models. Sadhana, v.46(3), pp.1–17. doi:https://doi.org/10.1007/s12046-021-01640-1

    Article  Google Scholar 

  • Ghannadi, P., Kourehli, S.S., Noori, M. and Altabey, W.A. (2020) Efficiency of grey wolf optimization algorithm for damage detection of skeletal structures via expanded mode shapes. Advan. Struct. Engg., v.23(13), pp.2850–2865.

    Article  Google Scholar 

  • Gratchev, I. B., Sassa, K. and Fukuoka, H. (2006) How reliable is the plasticity index for estimating the liquefaction potential of clayey sands? Jour. Geotech. Geoenviron. Engg., v.132(1), pp.124–127. doi:https://doi.org/10.1061/(ASCE)1090-0241(2006)132:1(124)

    Article  Google Scholar 

  • Harichane, Z., Erken, A., Ghrici, M. and Chateauneuf, A. (2018) Case Study of Reliability Liquefaction Analysis Based on Standard Penetration Test: Sakarya City (Turkey). Conference of the Arabian Jour. Geosci., pp.213–215.

  • Harr, M.E. (1984) Reliability-based design in civil engineering (Vol. 20). Department of Civil Engineering, School of Engineering, North Carolina State.

    Google Scholar 

  • Himanshu, N., Kumar, V., Burman, A., Maity, D. and Gordan, B. (2020) Grey wolf optimization approach for searching critical failure surface in soil slopes. Engineering with Computers, pp.1–14.

  • Idriss, I.M. and Boulanger, R.W. (2006) Semi-empirical procedures for evaluating liquefaction potential during earthquakes. Soil Dynamics and Earthquake Engineering, v.26(2–4 Spec. iss.), pp.115–130. doi:https://doi.org/10.1016/j.soildyn.2004.11.023

    Article  Google Scholar 

  • Jha, S.K. and Suzuki, K. (2009) Reliability analysis of soil liquefaction based on standard penetration test. Computers and Geotechnics, v.36(4), pp.589–596. doi:https://doi.org/10.1016/j.compgeo.2008.10.004

    Article  Google Scholar 

  • Johari, A. and Behzadi, M. (2020) 3rd International Conference on Civil Engineering, A comparative study of stochastic liquefaction analysis of fine-grained soils. August, 0–9.

  • Juang, C.H. and Chen, C.J. (1999) Cpt-based liquefaction evaluation using artificial neural networks. Computer-Aided Civil and Infrastructure Engineering, v.14(3), pp.221–229.

    Article  Google Scholar 

  • Juang, C.H., Fang, S.Y. and Khor, E.H. (2006) First-Order Reliability Method for Probabilistic Liquefaction Triggering Analysis Using CPT. Jour. Geotech. Geoenviron. Engg., v.132(3), pp.337–350. doi:https://doi.org/10.1061/(asce)1090-0241(2006)132:3(337)

    Article  Google Scholar 

  • Juang, C.H., Li, D.K., Fang, S.Y., Liu, Z. and Khor, E.H. (2008) Simplified Procedure for Developing Joint Distribution of amax and Mw for Probabilistic Liquefaction Hazard Analysis. Jour. Geotech. Geoenviron. Engg., v.134(8), pp.1050–1058. doi:https://doi.org/10.1061/(asce)1090-0241(2008)134:8(1050)

    Article  Google Scholar 

  • Juang, C.H., Rosowsky, D.V. and Tang, W.H. (1999). Reliability-based method for assessing liquefaction potential of soils. Jour. Geotech. Geoenviron. Engg., v.125(8), pp.684–689. doi:https://doi.org/10.1061/(ASCE)1090-0241(1999)125:8(684)

    Article  Google Scholar 

  • Juang, C.H., Zhang, J., Khoshnevisan, S. and Gong, W. (2017) Probabilistic Methods for Assessing Soil Liquefaction Potential and Effect. Geotech. Spec. Publ., v.282, pp.122–145. doi:https://doi.org/10.1061/9780784480694.007

    Google Scholar 

  • Khan, M.A., Khan, Dr. M.Z. and Mohd. Khan, B. (2016) Effect of Fines on Liquefaction Resistance in Fine Sand and Silty Sand. Int. Jour. Engg. Res. Appli., v.6(1), pp.102–106. doi:https://doi.org/10.4018/jgee.2011070105

    Google Scholar 

  • Madsen, H.O., Krenk, S. and Lind, N.C. (2006) Methods of structural safety. Courier Corporation.

  • Maheshwari, B., Kale, S. and Kaynia, A. (2012) Dynamic properties of Solani sand at large strains: a parametric study. Internat. Jour. Geotech. Engg., v.6(3), pp.353–358.

    Article  Google Scholar 

  • Marto, A., Tan, C.S., Makhtar, A.M., Ung, S.W. and Lim, M.Y. (2015) Effect of Plasticity on Liquefaction Susceptibility of Sand-Fines Mixtures. Appl. Mech.Mater., v.773–774, pp.1407–1411. doi:https://doi.org/10.4028/www.scientific.net/amm.773-774.1407

    Article  Google Scholar 

  • Mijic, Z., Bray, J.D., Riemer, M.F., Rees, S.D. and Cubrinovski, M. (2021) Cyclic and monotonic simple shear testing of native Christchurch silty soil. Soil Dynamics and Earthquake Engineering, v.148, 106834.

    Article  Google Scholar 

  • Mirjalili, S., Mirjalili, S.M. and Lewis, A. (2014) Grey wolf optimizer. Advan. Engg. Software, v.69, pp.46–61.

    Article  Google Scholar 

  • Nhu, V.H., Samui, P., Kumar, D., Singh, A., Hoang, N.D. and Tien Bui, D. (2019) Advanced soft computing techniques for predicting soil compression coefficient in engineering project: a comparative study. Engineering with Computers, 0123456789. doi:https://doi.org/10.1007/s00366-019-00772-7

  • Phoon, K.-K. and Kulhawy, F.H. (1999) Characterization of geotechnical variability. Canadian Geotech. Jour., v.36(4), pp.612–624.

    Article  Google Scholar 

  • Polito, C. (2001) Scholars’ Mine Plasticity Based Liquefaction Criteria Plasticity Based Liquefaction.

  • Qi, C., Fourie, A., Ma, G. and Tang, X. (2018) A hybrid method for improved stability prediction in construction projects: A case study of stope hangingwall stability. Applied Soft Computing, v.71, pp.649–658.

    Article  Google Scholar 

  • Raja, M.N.A. and Shukla, S.K. (2021) Predicting the settlement of geosynthetic-reinforced soil foundations using evolutionary artificial intelligence technique. Geotextiles and Geomembranes, v.49(5), pp.1280–1293. doi:https://doi.org/10.1016/j.geotexmem.2021.04.007

    Article  Google Scholar 

  • Ray, R., Kumar, D., Samui, P., Roy, L.B., Goh, A.T.C. and Zhang, W. (2021) Application of soft computing techniques for shallow foundation reliability in geotechnical engineering. Geosci. Front., v.12(1), pp.375–383.

    Article  Google Scholar 

  • Seed, H.B. and Idriss, I.M. (1971) Simplified procedure for evaluating soil liquefaction potential. Jour. Soil Mech. Found. Div., v.97(9), pp.1249–1273.

    Article  Google Scholar 

  • Tikhamarine, Y., Malik, A., Kumar, A., Souag-Gamane, D. and Kisi, O. (2019) Estimation of monthly reference evapotranspiration using novel hybrid machine learning approaches. Hydrol. Sci. Jour., v.64(15), pp.1824–1842. https://doi.org/10.1080/02626667.2019.1678750

    Article  Google Scholar 

  • Umar, S. K., Samui, P. and Kumari, S. (2018a) Deterministic and Probabilistic Analysis of Liquefaction for Different Regions in Bihar. Geotech. Geol. Engg., v.36(5), pp.3311–3321. doi:https://doi.org/10.1007/s10706-018-0498-7

    Article  Google Scholar 

  • Umar, S. K., Samui, P. and Kumari, S. (2018b) Reliability analysis of liquefaction for some regions of Bihar. Internat. Jour. Geotech. Earthquake Engg., v.9(2), pp.23–37. doi:https://doi.org/10.4018/IJGEE.2018070102

    Article  Google Scholar 

  • Uzlu, E. (2021) Estimates of greenhouse gas emission in Turkey with grey wolf optimizer algorithm-optimized artificial neural networks. Neural Computing and Applications, v.33(20), pp.13567–13585. https://doi.org/10.1007/s00521-021-05980-1

    Article  Google Scholar 

  • Wang, W. (1979) Some findings in soil liquefaction. Earthquake Engineering Department, Water Conservancy and Hydroelectric Power.

  • Wang, Y., Tang, H., Wen, T. and Ma, J. (2019) A hybrid intelligent approach for constructing landslide displacement prediction intervals. Applied Soft Computing, v.81, 105506.

    Article  Google Scholar 

  • Zhang, P., Yin, Z.-Y., Jin, Y.-F. and Chan, T. H. T. (2020) A novel hybrid surrogate intelligent model for creep index prediction based on particle swarm optimization and random forest. Engg. Geol., 265, 105328. doi:https://doi.org/10.1016/j.enggeo.2019.105328

    Article  Google Scholar 

  • Zhang, Y., Qiu, J., Zhang, Y. and Xie, Y. (2021) The adoption of a support vector machine optimized by GWO to the prediction of soil liquefaction. Environ. Earth Sci., v.80(9), pp.1–9. doi:https://doi.org/10.1007/s12665-021-09648-w

    Article  Google Scholar 

  • Zhou, J., Huang, S., Wang, M. and Qiu, Y. (2021) Performance evaluation of hybrid GA-SVM and GWO-SVM models to predict earthquake-induced liquefaction potential of soil: a multi-dataset investigation. Engineering with Computers, 0123456789. doi:https://doi.org/10.1007/s00366-021-01418-3.

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sufyan Ghani or Sunita Kumari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghani, S., Kumari, S. Reliability Analysis for Liquefaction Risk Assessment for the City of Patna, India using Hybrid Computational Modeling. J Geol Soc India 98, 1395–1406 (2022). https://doi.org/10.1007/s12594-022-2187-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12594-022-2187-7

Navigation