Skip to main content
Log in

AVA Analysis of BSR in Fractured filled Gas-hydrates Reservoir in Krishna-Godavari Basin, India

  • Original Article
  • Published:
Journal of the Geological Society of India

Abstract

Gas-hydrates, a major unconventional energy resources of the future, are delineated by seismic experiment through the identification of an anomalous reflector, known as the bottom simulating reflector or BSR on seismic data. The amplitude variation with angle (AVA) from the BSR can be used for quantitative assessment of gas-hydrates and free-gas across the BSR. We have performed the AVA analysis of BSR in the Krishna Godavari (KG) basin of India, where gas-hydrates have been recovered in fractured shale by Exp-01 of Indian National Gas Hydrates Program. The study shows negative intercept and positive gradient along two perpendicular seismic lines, one passing through the well at site-10 of Exp-01. The intercept of −0.01 to −0.15 and gradient of 0.01 to 0.4 are interpreted as class-IV anomaly, which is due to anisotropy caused by fractures filled with gas-hydrates. We have modelled the observed AVA pattern using anisotropic equation for horizontally symmetric transversally isotropic (HTI) media in which gas-hydrates occur in the fractures, roughly aligned at angle of 45° above the BSR and patchy gas distribution below the BSR. The results show 0–31% variable gas-hydrates in fractured morphology and 0–11% free gas below the BSR respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andreassen, K., Hart P.E. and MacKay, M. (1997) Amplitude versus offset modelling of the bottom simulating reflection associated with submarine gas hydrates. Mar. Geol., v.137, pp.25–40.

    Article  Google Scholar 

  • Arun K.P., Sain, K. and Kumar, J. (2017) Estimation of elastic parameters from constrained AVO inversion and saturation of gas hydrates in the Mahanadi offshore basin, India. Jour. Natural Gas Sci. Engg., v.50, pp.90–100.

    Article  Google Scholar 

  • Arun, K.P, Sain, K. and Kumar, J. (2020) Application of constrained AVO inversion: 2D modelling of gas hydrates and free gas in Mahanadi basin, India. Jour. Natural Gas Sci. Engg., v.78, 103287, pp.1–19.

    Google Scholar 

  • Backus, G.E. (1962) Long-wave elastic anisotropy produced by horizontal layering. Jour. Geophys. Res., v.67(11), pp.4427–4440.

    Article  Google Scholar 

  • Carcione, J.M. and Tinivella, U. (2000) Bottom-simulating reflectors: seismic velocities and AVO effects. Geophysics, v.65(1), pp.54–67.

    Article  Google Scholar 

  • Castagna, J.F. and Swan, H.W. (1997) Principles of AVO cross plotting. The Leading Edge, v.16(4), pp.337–344.

    Article  Google Scholar 

  • Castagna, J.F., Swan H.W. and Foster, D.J. (1998) Framework for AVO gradient and intercept interpretation. Geophysics, v.63(3), pp.948–956.

    Article  Google Scholar 

  • Collett, T.S., Riedel, M., Cochran, J., Boswell, R., Presley, J., Kumar, P., Sathe, A.V., Sethi, A.K., Lall, M., Sibal, V.K. and NGHP Expedition 01 Scientists. (2008) NGHP Expedition 01, 2006, Initial Reports. Directorate General of Hydrocarbons, Noida and Ministry of Petroleum & Natural Gas, India, 4.

    Google Scholar 

  • Collett, T.S., Boswell, R., Cochran, J.R., Kumar, P., Lall, M., Mazumdar, A., Ramana, M.V., Ramprasad, T., Riedel, M., Sain, K., Sathe, A.V., Vishwanath, K., and NGHP Expedition 01 Scientific Party. (2014) Geologic implications of gas hydrates in the Indian offshore: Results of the National Gas Hydrate Program Expedition 01. Mar. Petrol. Geol., v.58, pp.3–28

    Article  Google Scholar 

  • Crutchley, G.J., Gorman, A.R., Petcher, I.A., Toulmin, S., Henrys, S.A.. (2011) Geological controls on fluid flow through the gas hydrate stability zone on the southern Hikurangi Margin of New Zealand, evidenced from multichannel seismic data. Mar. Petrol. Geol., v.28, pp.1915–1931.

    Article  Google Scholar 

  • Dewangan, P., Sriram, G., Ramprasad, T., Ramana, M. V., & Jaiswal, P. (2011). Fault system and thermal regime in the vicinity of site NGHP-01–10, Krishna-Godavari basin, Bay of Bengal. Mar. Petrol. Geol., v.28(10), pp.1899–1914.

    Article  Google Scholar 

  • Ghosh, R., Sain, K. and Ojha, M. (2010) Effective medium modelling of gas hydrate-filled fractures using sonic log in the Krishna-Godavari basin, eastern Indian offshore. Jour. Geophys. Res., v.115, B06101, pp.1–15.

    Google Scholar 

  • Kumar, P., Collett, T.S., Boswell, R., Cochran, J.R., Lall, M., Mazumdar, A., Ramana, M.V., Ramprasad, T., Riedel, M., Sain, K., Sathe, A.V., Vishwanath, K., Yadav, U.S., & bNGHP Expedition 01 Scientific Party. (2014) Geologic implications of gas hydrates in the Indian offshore: Krishna-Godavari Basin, Mahanadi Basin, Andaman Sea, Kerala-Konkan Basin. Jour. Mar.Petrol. Geol., v.58, pp.29–98.

    Article  Google Scholar 

  • Lee, M.W. (2002). Modified Biot Gassmann Theory for calculating Elastic velocities for unconsolidated and consolidated sediments. Mar. Geophys. Res., v.23, pp.403–412.

    Article  Google Scholar 

  • Lee, M.W. (2004) Elastic velocities of partially gas-saturated unconsolidated sediments. Mar. Petrol. Geol., v.21(6), pp.641–650.

    Article  Google Scholar 

  • Lee, M.W. and Collett, T.S. (2009) Gas hydrate saturations estimated from fractured reservoir at Site NGHP-01–10, Krishna-Godavari Basin, India. Jour. Geophys. Res., v.114: B07102, pp.1–13.

    Google Scholar 

  • Lee, M.W. and Waite, W.F. (2008) Estimating pore-space gas hydrate saturations from well-log acoustic data. Geochem. Geophys. Geosyst., v.9, Q07008, pp.1–8.

    Google Scholar 

  • Mavko, G, Mukerji, T. and Dvorkin, J. (2009) The Rock Physics Handbook, 2nd Edition, Cambridge University Press.

  • Ojha, M. and Sain, K. (2007) Seismic velocities and quantification of gas hydrates from AVA modeling in the western continental margin of India. Mar. Geophys. Res., v.28, pp.101–107

    Article  Google Scholar 

  • Ojha, K. and Sain, K. (2008) Appraisal of gas hydrates/free-gas from VP/VS ratio in the Makran accretionary prism. Jour. Mar. Petrol. Geol., v.25, pp.637–644.

    Article  Google Scholar 

  • Ojha M., Sain, K. and Minshull, T.A. (2010) Assessment of gas hydrates saturation in the Makran accretionary prism using the offset dependence of seismic amplitudes. Geophys., v.75(2), pp.C1–C6.

    Article  Google Scholar 

  • Ostrander, W.J. (1984) Plane-wave reflection coefficients for gas sands at non-normal angles of incidence. Geophys., v.49, pp.1637–1649.

    Article  Google Scholar 

  • Riedel, M., Collet, T.A., Kumar, P. and Sathe, A.V. (2010) Seismic imaging of a fractured gas hydrate system in the Krishna-Godavari Basin offshore India. Jour. Mar. Petrol. Geol., v.27(7), pp.1476–1493.

    Article  Google Scholar 

  • Rüger, A. (1997) P-wave reflection coefficients for transversely isotropic models with vertical and horizontal axis of symmetry. Geophys., v.62(3), pp.713–722.

    Article  Google Scholar 

  • Rüger, A. (1998) Variation of P-wave reflectivity with offset and azimuth in anisotropic media. Geophys., v.63, pp.935–947.

    Article  Google Scholar 

  • Rutherford, S.R. and Williams, R.H. (1989) Amplitude-versus-offset variations in gas sands. Geophys., v.54, pp.680–688.

    Article  Google Scholar 

  • Sain, K., Minshull, T.A., Singh, S.C. and Hobbs, R.W. (2000). Evidence for a thick free-gas layer beneath the bottom-simulating reflector in the Makran accretionary prism. Marine Geol., v.164, pp.3–12.

    Article  Google Scholar 

  • Sain, K. and Gupta, H.K. (2008) Gas hydrates: Indian scenario. Jour. Geol. Soc. India, v.72, pp.299–311.

    Google Scholar 

  • Sain, K., Rajesh, V., Satyavani, N., Subbarao, K.V. and Subrahmanyam, C. (2011) Gas hydrate stability thickness map along the Indian continental margin. Mar. Petrol. Geol., v.28, pp.1779–1786.

    Article  Google Scholar 

  • Sain, K. and Gupta, H.K. (2012) Gas hydrates in India: Potential and Development. Gondwana Res., v.22, pp.645–657.

    Article  Google Scholar 

  • Sain, K. Ojha, M., Satyavani, N., Ramadass, G.A., Ramprasad, T., Das, S.K. and Gupta, H.K. (2012) Gas-Hydrates in the Krishna-Godavari and Mahanadi Basins: New Data. Jour. Geol. Soc. India, v.79, pp.553–556.

    Article  Google Scholar 

  • Shankar, U., Gupta, D.K., Bhowmick, D. and Sain, K. (2013). Gas hydrate and free-gas saturations using rock physics modelling at site NGHP-01–05 in Krishna-Godavari basin, eastern Indian margin. Jour. Petrol. Sci. Engg., v.106, pp.62–70.

    Article  Google Scholar 

  • Sheriff, R.E. and Geldart, L.P. (1982) Exploration seismology: History, theory, and data acquisition, vol. 1, Cambridge Univ. Press, New York.

    Google Scholar 

  • Shuey, R.T. (1985) A simplification of the Zoeppritz equations. Geophys., v.50, pp.609–614.

    Article  Google Scholar 

  • Sloan, E.D. (1990) Clathrate Hydrates of Natural Gases, Marcel Dekker, Inc., New York. 641p.

    Google Scholar 

  • Sriram, G., Dewangan, P., Ramprasad, T. and RamaRao, P. (2103). Anisotropic amplitude variation of the bottom-simulating reflector beneath fracture-filled gas hydrate deposit. Jour. Geophys. Res. (Solid Earth), v.118, pp.2258–2274.

    Article  Google Scholar 

  • Thomsen, L. (1986) Weak elastic anisotropy. Geophys., v.51(10), pp.1954–1966.

    Article  Google Scholar 

  • Zoeppritz, K. (1919) Erdbebnwwllen, VIIIB, On the reflection and propagation of seismic waves. Gottinger Nachrichten, v.1, pp.64–84.

    Google Scholar 

Download references

Acknowledgements

The Director, CSIR-NGRI Director, WIHG are thanked for their kind consent to publish this work. The Ministry of Petroleum & Natural Gas, the Ministry of Earth Sciences and the Dept. od Sci. & Tech., GoI are acknowledged for financial support. The Oil & Natural Gas Corporation Limited and the Directorate General of Hydrocarbons are thanked for providing the seismic and well log data for pursuing research on gas-hydrates. KS acknowledges SERB-DST for providing him with the JC. Bose Fellowship. This is a Wadia contribution no: WIHG/0076 and CSIR-NGRI contribution No. NGRI/Lib/2022/Pub-20

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kalachand Sain.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pandey, V., Sain, K. AVA Analysis of BSR in Fractured filled Gas-hydrates Reservoir in Krishna-Godavari Basin, India. J Geol Soc India 98, 1253–1260 (2022). https://doi.org/10.1007/s12594-022-2160-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12594-022-2160-5

Navigation