Skip to main content
Log in

Magma Mixing and Mingling during Pluton Formation: A Case Study through Field, Petrography and Crystal Size Distribution (CSD) Studies on Sirsilla Granite Pluton, India

  • Original Article
  • Published:
Journal of the Geological Society of India

Abstract

Field, petrography, and crystal size distributions (CSD) of different lithological variants from Sirsilla granitic pluton (SGP), southern India, is described here to understand operative magmatic processes. The SGP contains many mafic microgranular enclaves (MMEs) and syn-plutonic dykes. The contact relationship between MMEs and the host granite is often diffusive or gradational and rarely sharp, implying disaggregation and under-cooling of MMEs. Petrographic features like resorption textures, quartz ocelli, and the poikilitic nature of the large K-feldspar grains enclosed within plagioclase indicate interaction and magma mixing/mingling processes in an open magma chamber. Bladed biotite and acicular apatite grains in MMEs are due to rapid crystallization during the magma mingling process. The CSD curves generated for plagioclase provide an inverse relationship between population density and crystal size. Multiple crystal populations, i.e., a gently sloping line for the core samples and a steeply sloping line for margin samples, are interpreted to be caused by the mafic — felsic magma mixing and mingling processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Armienti, P., Pareschi, MT., Innocenti, F., Pompilio, M. (1994) Effects of magma storage and ascent on the kinetics of crystal growth — The case of the 1991–93 Mt. Etna eruption. Contrib. Mineral. Petrol., v.115, pp.402–414. doi:https://doi.org/10.1007/BF00320974

    Article  Google Scholar 

  • Arvin, M., Dargahi, S., Babaei, AA. (2004) Mafic microgranular enclave swarms in the Chenar granitoid stock, NW of Kerman, Iran: Evidence for magma mingling. Jour. Asian Earth Sci., v.24, pp.105–113.

    Article  Google Scholar 

  • Barbarin, B. (2005) Mafic magmatic enclaves and mafic rocks associated with some granitoids of the central Sierra Nevada batholith, California: Nature, origin, and relations with the hosts. Lithos., v.80, pp.155–177. doi:https://doi.org/10.1016/j.lithos.2004.05.010

    Article  Google Scholar 

  • Barbarin, B. (1990) Granitoids: Main petrogenetic classifications in relation to origin and tectonic setting. Geol. Jour., v.25, pp.227–238. doi:https://doi.org/10.1002/gj.3350250306

    Google Scholar 

  • Barbarin, B. and Didier, J. (1992) Genesis and evolution of mafic microgranular enclaves through various types of interaction between coexisting felsic and mafic magmas. Trans. Royal Soc. Edinb. Earth Sci., v.83, pp.145–153. doi:https://doi.org/10.1017/S0263593300007835

    Google Scholar 

  • Baxter, S. (2002) Field and petrographic evidence for magma mixing and mingling in Granitoids: Examples from the Galway Granite, Connemara. Mineral. Petrol., v.76, pp.63–74. doi:https://doi.org/10.1007/s00710-001-0178-8

    Article  Google Scholar 

  • Cashman, K.V. (1993) Relationship between plagioclase crystallization and cooling rate in basaltic melts. Contrib. Mineral. Petrol., v.113, pp.126–142. doi:https://doi.org/10.1007/BF00320836

    Article  Google Scholar 

  • Cashman, K V., Marsh, BD. (1988) Crystal size distribution (CSD) in rocks and the kinetics and dynamics of crystallization II: Makaopuhi lava lake. Contrib. Mineral. Petrol., v.99, pp.292–305. doi:https://doi.org/10.1007/BF00375363

    Article  Google Scholar 

  • Castro, A., Moreno Ventas, I., de la Rosa, J.D. (1990) Microgranular enclaves as indicators of hybridization processes in granitoid rocks, Hercynian Belt, Spain. Geol Jour., v.25, pp.391–404. https://doi.org/10.1002/gj.3350250321

    Google Scholar 

  • Deb, T., Bhattacharyya, T. (2018) Interaction between felsic granitoids and mafic dykes in Bundelkhand Craton: A field, petrographic and crystal size distribution study. Jour. Earth Syst. Sci., v.127:. https://doi.org/10.1007/s12040-018-1003-7

  • Dey, S. (2013) Evolution of Archaean crust in the Dharwar craton: The Nd isotope record. Precambrian Res., v.227, pp.227–246. https://doi.org/10.1016/j.precamres.2012.05.005

    Article  Google Scholar 

  • Slaby and G. (2004) Feldspar crystallization under magma-mixing conditions shown by cathodoluminescence and geochemical modelling — a case study from the Karkonosze pluton (SW Poland). Mineral Mag., v.68, pp.561–577. https://doi.org/10.1180/0026461046840205

    Article  Google Scholar 

  • Elangovan, R., Krishna, K., Vishwakarma, N. (2017) Interaction of coeval felsic and mafic magmas from the Kanker Granite, Pithora region, Bastar Craton, central India. Jour Earth Syst Sci., v.126, pp.1–15. https://doi.org/10.1007/s12040-017-0886-z

    Google Scholar 

  • Frost, TP., Mahood, GA., (1987) Field, chemical, and physical constraints on mafic- felsic magma interaction in the Lamarck Granodiorite, Sierra Nevada, California (USA). Geol Soc Am Bull., v.99, pp.272–291. https://doi.org/10.1130/0016-7606(1987)99<272:FCAPCO>2.0.CO;2

    Article  Google Scholar 

  • Garrido, CJ., Kelemen, PB., Hirth, G. (2001) Variation of cooling rate with depth in lower crust formed at an oceanic spreading ridge: Plagioclase crystal size distributions in gabbros from the Oman ophiolite. Geochemistry, Geophys Geosystems., v.2. https://doi.org/10.1029/2000GC000136

  • Hibbard, MJ. (1981) The magma mixing origin of mantled feldspars. Contrib to Mineral Petrol., v.76, pp.158–170. https://doi.org/10.1007/BF00371956

    Article  Google Scholar 

  • Hibbard, MJ. (1991) Textural anatomy of twelve magma-mixed granitoid systems. Enclaves Granite Petrol Dev Pet., v.32, pp.431–444.

    Google Scholar 

  • Higgins, MD. (1996) Magma dynamics beneath Kameni volcano, Thera, Greece, as revealed by crystal size and shape measurements. Jour. Volcanol Geotherm Res., v.70, pp.37–48. https://doi.org/10.1016/0377-0273(95)00045-3

    Article  Google Scholar 

  • Higgins, MD. (2006) Quantitative Textural Measurements in Igneous and Metamorphic Petrology.

  • Higgins, MD. (2002) Closure in crystal size distributions (CSD), verification of CSD calculations, and the significance of CSD fans. Am Mineral., v.87, pp.1242–1243

    Article  Google Scholar 

  • Higgins, MD., Roberge, J. (2007) Three magmatic components in the 1973 eruption of Eldfell volcano, Iceland: Evidence from plagioclase crystal size distribution (CSD) and geochemistry. Jour Volcanol Geotherm Res., v.161, pp.247–260. https://doi.org/10.1016/jjvolgeores.2006.12.002

    Article  Google Scholar 

  • Jayananda, M., Aadhiseshan, KR., Kusiak, MA. (2020) Multi-stage crustal growth and Neoarchean geodynamics in the Eastern Dharwar Craton, southern India. Gondwana Res., v.78, pp.228–260. https://doi.org/10.1016/j.gr.2019.09.005

    Article  Google Scholar 

  • Jayananda, M., Gireesh, R V., Sekhamo, KU., Miyazaki, T. (2014) Coeval felsic and Mafic Magmas in neoarchean calc-alkaline magmatic arcs, Dharwar craton, Southern India: Field and petrographic evidence from mafic to Hybrid magmatic enclaves and synplutonic Mafic dykes. Jour. Geol. Soc. India., v.84, pp.5–28. https://doi.org/10.1007/s12594-014-0106-2

    Article  Google Scholar 

  • Jayananda, M., Miyazaki, T., Gireesh, RV. (2009) Synplutonic mafic dykes from late archaean granitoids in the Eastern Dharwar Craton, southern India. Jour. Geol. Soc. India., v.73, pp. 117–130. doi:https://doi.org/10.1007/s12594-009-0007-y

    Article  Google Scholar 

  • Jayananda, M., Tsutsumi, Y., Miyazaki, T. (2013) Geochronological constraints on Meso- and Neoarchean regional metamorphism and magmatism in the Dharwar craton, southern India. Jour Asian Earth Sci., v.78, pp.18–38. doi:https://doi.org/10.1016/j.jseaes.2013.04.033

    Article  Google Scholar 

  • Jeen, M.J., Kim, J.S., Lee, J.D. (2002) Study on the origin of rapakivi texture in Bangeojin granite. Jour. Petrol. Soc. Korea., v.11, pp.30–48.

    Google Scholar 

  • Kumar, S. (1995) Microstructural evidence of magma quenching inferred from microgranular enclave hosted in Hodruša granodiorite, western Carpathians. Geol. Carpathica., v.46, pp.379–382.

    Google Scholar 

  • Kumar, S. (2020) Schedule of Mafic to Hybrid Magma Injections Into Crystallizing Felsic Magma Chambers and Resultant Geometry of Enclaves in Granites: New Field and Petrographic Observations From Ladakh Batholith, Trans-Himalaya, India. Front. Earth Sci., v.8. doi:https://doi.org/10.3389/feart.2020.551097

  • Kumar, S. (2010) Mafic to hybrid microgranular enclaves in the Ladakh batholith, northwest Himalaya: Implications on calc-alkaline magma chamber processes. Jour. Geol. Soc. India, v.76, pp.5–25. doi:https://doi.org/10.1007/s12594-010-0080-2

    Article  Google Scholar 

  • Kumar, S., Pieru, T., Rino, V. and Hayasaka, Y. (2017) Geochemistry and U-Pb SHRIMP zircon geochronology of microgranular enclaves and host granitoids from the South Khasi Hills of the Meghalaya Plateau, NE India: evidence of synchronous mafic—felsic magma mixing—fractionation and diffusion in a post-collision tectonic environment during the Pan-African orogenic cycle. Geol. Soc., London, Spec. Publ., v.457(1), pp.253–289.

    Article  Google Scholar 

  • Kumar, S., Rino, V., Pal, A.B. (2004) Typology and geochemistry of microgranular enclaves hosted in Malanjkhand granitoids, Central India. Jour. Geol. Soc. India, v.64, pp.277–292.

    Google Scholar 

  • Manikyamba, C. and Kerrich, R. (2012) Eastern Dharwar Craton, India: Continental lithosphere growth by accretion of diverse plume and arc terranes. Geosci Front., v.3, pp.225–240. doi:https://doi.org/10.1016/j.gsf.2011.11.009

    Article  Google Scholar 

  • Manikyamba, C., Kerrich, R., Khanna, T.C. (2009) Enriched and depleted arc basalts, with Mg-andesites and adakites: A potential paired arc-back-arc of the 2.6 Ga Hutti greenstone terrane, India. Geochim. Cosmochim. Acta, v.73, pp.1711–1736. doi:https://doi.org/10.1016/j.gca.2008.12.020

    Article  Google Scholar 

  • Marsh, B.D. (1998) On the interpretation of crystal size distributions in magmatic systems. Jour. Petrol., v.39, pp.553–599. doi:https://doi.org/10.1093/petroj/39.4.553

    Article  Google Scholar 

  • Meen, J.K., Rogers, J.J.W., Fullagar, P.D. (1992) Lead isotopic compositions of the Western Dharwar craton, southern India: Evidence for distinct Middle Archean terranes in a Late Archean craton. Geochim. Cosmochim. Acta, v.56, pp.2455–2470. doi:https://doi.org/10.1016/0016-7037(92)90202-T

    Article  Google Scholar 

  • Meshram, T., Dora, M.L., Baswani, S.R. (2021) Petrogenesis and U-Pb geochronology of charnockites flanking the Pranhita Godavari rift in peninsular India-link between the Bastar and Eastern Dharwar Cratons. Gondwana Res., v.92, pp.113–132. doi:https://doi.org/10.1016/j.gr.2020.12.024

    Article  Google Scholar 

  • Perugini, D. and Poli, G. (2012) The mixing of magmas in plutonic and volcanic environments: Analogies and differences. Lithos., v.153, pp.261–277.

    Article  Google Scholar 

  • Perugini, D., Poli, G., Christofides, G. and Eleftheriadis, G. (2003) Magma mixing in the Sithonia Plutonic Complex, Greece: Evidence from mafic microgranular enclaves. Mineral. Petrol., v.78, pp173–200. doi:https://doi.org/10.1007/s00710-002-0225-0

    Article  Google Scholar 

  • Perugini, D., Ventura, G., Petrelli, M., Poli, G. (2004) Kinematic significance of morphological structures generated by mixing of magmas: A case study from Salina Island (southern Italy). Earth Planet Sci Lett., v.222, pp.1051–1066. https://doi.org/10.1016/j.epsl.2004.03.038

    Article  Google Scholar 

  • Poli, G., Tommasini, S., Halliday, AN. (1996) Trace element and isotopic exchange during acid-basic magma interaction processes. Trans R Soc Edinburgh, Earth Sci., v.87, pp.225–232. https://doi.org/10.1017/s0263593300006635

    Google Scholar 

  • Prabhakar, BC., Jayananda, M., Shareef M, Kano T. (2009) Synplutonic mafic injections into crystallizing granite pluton from gurgunta area, northern part of eastern dharwar craton: Implications for magma chamber processes. Jour. Geol. Soc. India., v.74, pp.171–188. doi:https://doi.org/10.1007/s12594-009-0120-y

    Article  Google Scholar 

  • Rajesham, T., Rao, Y.J.B. and Murti, K.S. (1993) The Karimnagar granulite terrane — a new sapphirine bearing granulite province, south India. Jour Geol Soc India., v.41, pp.51–59.

    Google Scholar 

  • Shukla, S., Mohan, M.R. (2019) Magma mixing in Neoarchean granite from Nalgonda region, Eastern Dharwar Craton, India: Morphological, mineralogical and geochemical evidences. Jour. Earth Syst. Sci., v.128, pp.1–27. doi:https://doi.org/10.1007/s12040-019-1095-8

    Google Scholar 

  • Sparks, R.S.J. and Marshall, L.A. (1986) Thermal and mechanical constraints on mixing between mafic and silicic magmas. Jour. Volcanol. Geotherm. Res., v.29, pp.99–124. doi:https://doi.org/10.1016/0377-0273(86)90041-7

    Article  Google Scholar 

  • Vernon, R.H. (2016) Rapakivi granite problems: plagioclase mantles and ovoid megacrysts. Aust Jour Earth Sci., v.63, pp.675–700. doi:https://doi.org/10.1080/08120099.2016.1241953

    Article  Google Scholar 

  • Vernon, R.H. (1991) Interpretation of microstructures of microgranitoid enclaves. In: Enclaves and Granite Petrology, Dev. Petrol. Elsevier, Amsterdam 13. pp. 277–291.

    Google Scholar 

  • Wiebe, R.A., Hawkins, D.P. (2015) Growth and impact of a mafic-silicic layered intrusion in the Vinalhaven intrusive complex, Maine. Jour. Petrol., v.56, pp.273–298. doi:https://doi.org/10.1093/petrology/egu078

    Article  Google Scholar 

  • Wyllie, P.J. (1977) Crustal anatexis: An experimental review. Tectonophysics, v.43, pp.41–71. doi:https://doi.org/10.1016/0040-1951(77)90005-1

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Director; CSIR-NGRI for permitting to publish this work. This work forms part of the Ph.D. thesis of the first author. I acknowledge the UGC-RGNF Fellowship and MoES project to carry out this work. We particularly acknowledge the contributions of Dr. EVSSK Babu for numerous helpful discussions. The authors are grateful to the anonymous reviewer for the constructive suggestions, comments and for efficient handling.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ch. Ashok.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ashok, C., Santhosh, G.H.N.V., Dash, S. et al. Magma Mixing and Mingling during Pluton Formation: A Case Study through Field, Petrography and Crystal Size Distribution (CSD) Studies on Sirsilla Granite Pluton, India. J Geol Soc India 98, 815–821 (2022). https://doi.org/10.1007/s12594-022-2072-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12594-022-2072-4

Navigation