Skip to main content
Log in

Mapping of the Buried Paleochannels on the Terminal Fans in the Western Ganga Plain: A Geomorphological and Ground Penetrating Radar-based Approach

  • Original Article
  • Published:
Journal of the Geological Society of India

Abstract

Paleochannels are valuable tools for delineating tectonics, climate, anthropogenic activities, reconstructing the paleogeography, and studying the geomorphological evolution of the alluvial plains. Paleochannels on the terminal fans provide crucial information regarding their geomorphic evolution in space and time. Furthermore, paleochannels could be a good source for groundwater exploration. Exposed paleochannels in the recent alluvial plains are mappable by remote sensing and field evidence. However, mapping becomes difficult due to burial in relatively older alluvial surfaces, and anthropogenic disturbances complicate the case. This paper deals with an integrated method of mapping the buried paleochannels in the terminal fans from the western Ganga plain. Paleochannels have been mapped on three Holocene terminal fans, using remote sensing and Google Earth images, and Cartosat DEM. As continuity of the entire length of paleochannels could not be traced by the above tools due to burial and intense anthropogenic modifications, aligned surface water bodies were helpful at places to ascertain their continuity. The ground penetrating radar (GPR) survey by bistatic antennae (100 MHz frequency in distance mode) detected the subsurface existence of these buried paleochannels up to a maximum depth of about 35 m. Field evidence of some of these buried channels was confirmed at few excavations by the presence of channel sand. A previous study of these terminal fans through optical stimulated luminescence (OSL) dating suggests that channel abandonment occurred between 4.7 to 2.3 Ka, coinciding with the period of the dry climate and intense surface faulting episodes in the Ganga plain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Almeida-Filho, R. and Miranda, F.P. (2007) Mega capture of the Rio Negro and formation of the Anavilhanas Archipelago, Central Amazônia, Brazil: Evidences in an SRTM digital elevation model. Remote Sens. of Environ., v.110, pp.387–392. doi:https://doi.org/10.1016/j.rse.2007.03.005.

    Article  Google Scholar 

  • Annan, A.P. (2002) GPR-History, trends, and future developments. Subsurface Sens. Technol. Applicat., v.3, pp.253–270.

    Article  Google Scholar 

  • Arya, A.K., Singh, A.P., Agarwal, K.K. (2020) A Multi Criteria Approach for Morpho-tectonic Evaluation of Sai River Basin in Uttar Pradesh. Jour. Geol. Soc. India, v.96, pp.171–179. doi:https://doi.org/10.1007/s12594-020-1525-x.

    Article  Google Scholar 

  • Baker, G.S. and Jol, H.M. (2007) Stratigraphic Analyses Using GPR. Geol. Soc. Amer. Bull., pp.181.

  • Bristow, C.S. and Jol, H.M. (2003) An introduction to ground penetrating radar (GPR) in sediments. Geol. Soc., London, Spec. Publ., v.211(1), pp.1–7.

    Article  Google Scholar 

  • Baines, D., Smith, D.G., Froese, D.G., Bauman, P., Nimeck, G. (2002) Electrical resistivity ground imaging (ERGI): A new tool for mapping the lithology and geometry of channel-belts and valley-fills. Sedimentology, v.49, pp.441–449. doi:https://doi.org/10.1046/j.1365-3091.2002.00453.x.

    Article  Google Scholar 

  • Beck, R.A., Burbank, D.W., Sercombe, W.J., Riley, G.W., Barndt, J.K., Berry, J.R., Afzal, J., Khan, A.M., Jurgen, H., Metje, J., Cheema, A. (1995) Stratigraphic evidence for an early collision between northwest India and Asia. Nature, v.373, pp.55–58. doi:https://doi.org/10.1038/373055a0.

    Article  Google Scholar 

  • Bertani, T. de C., Rossetti, D. de F., Albuquerque, P.C.G. (2013) Object-based classification of vegetation and terrain topography in Southwestern Amazonia (Brazil) as a tool for detecting ancient fluvial geomorphic features. Computers and Geosciences, v.60, pp.41–50, doi:https://doi.org/10.1016/j.cageo.2013.06.013.

    Article  Google Scholar 

  • Bhadra, B.K., Gupta, A.K., Sharma, J.R., Sharma, K.K. (2009) Saraswati nadi in haryana and its linkage with the vedic saraswati river — Integrated study based on satellite images and ground based information. Jour. Geol. Soc. India, v.73, pp.875–877, doi:https://doi.org/10.1007/s12594-009-0071-3.

    Article  Google Scholar 

  • Bhosle, B., Parkash, B., Awasthi, A.K., Singh, V.N. Singh, S. (2007) Remote sensing-GIS and GPR studies of two active faults, Western Gangetic Plains, India. Jour. Appl. Geophys., v.61, pp.155–164, doi:https://doi.org/10.1016/j.jappgeo.2006.10.003.

    Article  Google Scholar 

  • Bhosle, B., Parkash, B., Awasthi, A.K., Pati, P. (2009) Use of digital elevation models and drainage patterns for locating active faults in the Upper Gangetic Plain, India. Internat. Jour. Remote Sens., v.30, pp.673–691.

    Article  Google Scholar 

  • Challis, K. (2006) Airborne laser altimetry in alluviated landscapes. Archaeological Prospection, v.13, pp.103–127, doi:https://doi.org/10.1002/arp.272.

    Article  Google Scholar 

  • Chen, F., Lasaponara, R., Masini, N. (2017) An overview of satellite synthetic aperture radar remote sensing in archaeology: From site detection to monitoring. Jour. Cultural Heritage, v.23, pp.5–11, doi:https://doi.org/10.1016/j.culher.2015.05.003.

    Article  Google Scholar 

  • Conyers, L.B. (2016) Ground-Penetrating Radar for Geoarchaeology. John Wiley and Sons, doi:https://doi.org/10.1002/9781118949993.

  • De Smedt, P., Van Meirvenne, M., Meerschman, E., Saey, T., Bats, M., Court-Picon, M., De Reu, J., Zwertvaegher, A., Antrop, M., Bourgeois, J., De Maeyer, P., (2011) Reconstructing palaeochannel morphology with a mobile multicoil electromagnetic induction sensor. Geomorphology, v.130, pp.136–141, doi:https://doi.org/10.1016/j.geomorph.2011.03.009.

    Article  Google Scholar 

  • DeCelles, P.G., Gehrels, G.E., Quade, J., Ojha, T.P., Kapp, P.A., Upreti, B.N. (1998) Neogene foreland basin deposits, erosional unroofing, and the kinematic history of the Himalayan fold-thrust belt, western Nepal. Bull. Geol. Soc. Amer., v.110, pp.2–21, doi:https://doi.org/10.1130/0016-7606

    Article  Google Scholar 

  • Devi, K., Lakshmi, C.V., Raicy, M.C., Srinivasan, P., Murthy, S.G.N., Hussain, S.M., Buynevich, I., Nair, R.R. (2013) Integrated approach of assessing sedimentary characteristics of onshore sand deposits on the Velankanni coast, Tamil Nadu, India: Sheds light on extreme wave event signatures. Jour. Coastal Conserv., v.17, pp.167–178, doi:https://doi.org/10.1007/s11852-012-0228-x.

    Article  Google Scholar 

  • Dewey, J.F. and Bird, J.M. (1970) Mountain belts and the new global tectonics. Jour. Geophys. Res., v.75, pp.2625–2647. doi:https://doi.org/10.1029/JB075i014p02625.

    Article  Google Scholar 

  • Dubey, K.M., Chaubey, A.K., Mahale, V.P., Karisiddaiah, S.M. (2019) Buried channels provide keys to infer Quaternary stratigraphic and paleoenvironmental changes: A case study from the west coast of India. Geoscience Frontiers, v.10, pp.1577–1595, doi:https://doi.org/10.1016/j.gsf.2018.09.016.

    Article  Google Scholar 

  • Davis, J.L. and Annan, A.P. (1989) GPR for high resolution mapping of soil and rock stratigraphy. Geophys. Prospect., v.37, pp.531–551.

    Article  Google Scholar 

  • Fitzgerald, D.M., Buynevich, I.V., Rosen, P.S. (2001) Geological evidence of former tidal inlets along a retrograding barrier Duxbury Beach. Jour. Coastal Res., v.34, pp.1–13.

    Google Scholar 

  • Geddes, A. (1960) The alluvial morphology of the Indo-Gangetic Plain: Its mapping and geographical significance. Transactions and Papers (Institute of British Geographers), v.28, pp.253–276.

    Article  Google Scholar 

  • Ghoneim, E. and El-Baz, F. (2007) The application of radar topographic data to mapping of a mega-paleodrainage in the Eastern Sahara. Jour. Arid Environ., v.69, pp.658–675, doi:https://doi.org/10.1016/j.jaridenv.2006.11.018.

    Article  Google Scholar 

  • Ghoneim, E., Benedetti, M., El-Baz, F. (2012) An integrated remote sensing and GIS analysis of the Kufrah Paleoriver, Eastern Sahara. Geomorphology, v.139, pp.242–257, doi:https://doi.org/10.1016/j.geomorph.2011.10.025.

    Article  Google Scholar 

  • Ghosh, R., Srivastava, P., Shukla, U.K., Sehgal, R.K., Singh, I.B. (2019) 100 kyr sedimentary record of Marginal Gangetic Plain: Implications for forebulge tectonics. Palaeogeo., Palaeoclimat., Palaeoecol., v.520, pp.78–95, doi:https://doi.org/10.1016/j.palaeo.2019.01.035.

    Article  Google Scholar 

  • Ginau, A., Schiestl, R., Wunderlich, J. (2019) Integrative geoarchaeological research on settlement patterns in the dynamic landscape of the northwestern Nile delta. Quaternary Internat., v.511, pp.51–67. doi:https://doi.org/10.1016/j.quaint.2018.04.047.

    Article  Google Scholar 

  • Goodman, D. and Piro, S. (2013) GPR Remote Sensing in Archaeology. Springer, pp.233, doi:https://doi.org/10.1007/978-3-642-31857-3.

  • Gorokhovich, Y. and Voustianiouk, A. (2006) Accuracy assessment of the processed SRTM-based elevation data by CGIAR using field data from USA and Thailand and its relation to the terrain characteristics. Remote Sens. Environ., v.104, pp.409–415, doi:https://doi.org/10.1016/j.rse.2006.05.012.

    Article  Google Scholar 

  • Goswami, P.K. (2012) Geomorphic evidences of active faulting in the northwestern Ganga Plain, India: Implications for the impact of basement structures. Geosciences Jour., v.16, pp.289–299, doi:https://doi.org/10.1007/s12303-012-0030-7.

    Article  Google Scholar 

  • Graveleau, F., Strak, V., Dominguez, S., Malavieille, J., Chatton, M., Manighetti, I., Petit, C. (2015) Experimental modelling of tectonics-erosion-sedimentation interactions in compressional, extensional, and strike-slip settings. Geomorphology, v.244, pp.146–168, doi:https://doi.org/10.1016/j.geomorph.2015.02.011.

    Article  Google Scholar 

  • GSI (2000) Seismotectonics Atlas of India and Its Environs. Geol. Surv. India, pp.13–21

  • GSSI (2015) Radan user manual: version 7.0 Geophysical Survey Systems Inc, USA.

  • Hayakawa, E.H., Rossetti, D.F., Valeriano, M.M. (2010) Applying DEM-SRTM for reconstructing a late Quaternary paleodrainage in Amazonia. Earth Planet. Sci. Lett., v.297, pp.262–270, doi:https://doi.org/10.1016/j.epsl.2010.06.028.

    Article  Google Scholar 

  • Howard, A.J., Brown, A.G., Carey, C.J., Challis, K., Cooper, L.P., Kincey, M., Toms, P. (2008) Archaeological resource modelling in temperate river valleys: A case study from the Trent Valley, UK. Antiquity, v.82, pp.1040–1054, doi:https://doi.org/10.1017/S0003598X00097763.

    Article  Google Scholar 

  • Jol, H.M. (2008) Ground Penetrating Radar Theory and Applications; Elsevier, pp.544.

  • Jain, V. and Sinha, R. (2005) Response of active tectonics on the alluvial Baghmati River, Himalayan foreland basin, eastern India. Geomorphology, v.70, pp.339–356, doi:https://doi.org/10.1016/j.geomorph.2005.02.012.

    Article  Google Scholar 

  • Jaiswal, M.K., Srivastava, P., Tripathi, J.K., Islam, R. (2008) Feasibility of the sar technique on quartz sand of terraces of NW Himalaya: A case study from Devprayag. Geochronometria, v.31, pp.45–52, doi:https://doi.org/10.2478/v10003-008-0015-8.

    Article  Google Scholar 

  • Jana, A., Maiti, S., Biswas, A. (2016) Analysis of short-term shoreline oscillations along Midnapur-Balasore Coast, Bay of Bengal, India: a study based on geospatial technology. Modeling Earth Systems and Environment, v.2, pp.64, doi:https://doi.org/10.1007/s40808-016-0117-7.

    Article  Google Scholar 

  • Kiamehr, R. and Sjöberg, L.E. (2005) Effect of the SRTM global DEM on the determination of a high-resolution geoid model: A case study in Iran. Jour. Geodesy, v.79, pp.540–551, doi:https://doi.org/10.1007/s00190-005-0006-8.

    Article  Google Scholar 

  • Kothyari, G.C., Dumka, R.K., Singh, A.P., Chauhan, G., Thakkar, M.G., Biswas, S.K. (2017) Tectonic evolution and stress pattern of South Wagad Fault at the Kachchh Rift Basin in western India. Geol. Mag., v.154, pp.875–887, doi:https://doi.org/10.1017/S0016756816000509.

    Article  Google Scholar 

  • Kumar, S., Parkash, B., Manchanda, M.L., Singhvi, A.K., Srivastava, P. (1996) Holocene landform and soil evolution of the western Gangetic Plains: Implications of neotectonics and climate. Zeitschrift fur Geomorphologie, Supplement band, v.103, pp.283–312.

    Google Scholar 

  • Leal, R.A., Barboza, E.G., Bitencourt, V.J., Da Silva, A.B., Manzolli, R.P. (2016) Geological and stratigraphic characteristics of a holocene regressive barrier in Southern Brazil: GIS and GPR applied for evolution analysis. In: Jour. Coastal Res., Allen Press, pp.750–754., doi:https://doi.org/10.2112/SI75-151.1.

  • Liu, S., Goff, J.A., Austin, J.A. (2017) Seismic morphology and infilling structure of the buried channel system beneath the inner shelf off western Long Island, New York: Accessing clues to palaeo-estuarine and coastal processes. Marine Geol., v.387, pp.12–30, doi:https://doi.org/10.1016/j.margeo.2017.03.004.

    Article  Google Scholar 

  • Loveson, V.J., Dubey, R., Kumar, D., Nigam, R., Naqvi, S.W.A. (2016) An insight into subterranean flow proposition around Alleppey mudbank coastal sector, Kerala, India: inferences from the subsurface profiles of Ground Penetrating Radar. Environ. Earth Sci., v.75, pp.1–13, doi:https://doi.org/10.1007/s12665-016-6172-6.

    Article  Google Scholar 

  • Luo, L., Wang, X., Cai, H., Li, C., Ji, W. (2012) Mapping a paleodrainage system of the Keriya river using remote sensing data and historical materials. Jour. Earth Sci. Engg., v.2, pp.712–721.

    Google Scholar 

  • Luo, L., Wang, X., Guo, H., Lasaponara, R., Zong, X., Masini, N., Wang, G., Shi, P., Khatteli, H., Chen, F., Tariq, S (2019) Airborne and spaceborne remote sensing for archaeological and cultural heritage applications: A review of the century (1907–2017). Remote Sens. Environ., v.232, pp.111280, doi:https://doi.org/10.1016/j.rse.2019.111280.

    Article  Google Scholar 

  • Lyon Caen, H., Molnar, P. (1985) Gravity anomalies, flexure of the Indian Plate, and the structure, support and evolution of the Himalaya and Ganga Basin. Tectonics, v.4, pp.513–538, doi:https://doi.org/10.1029/TC004i006p00513.

    Article  Google Scholar 

  • Maio, C. V, Gontz, A.M., Sullivan, R.M., Madsen, S.M., Weidman, C.R., Donnelly, J.P. (2016) Subsurface Evidence of Storm-Driven Breaching along a Transgressing Barrier System, Cape Cod, U.S.A. Jour. Coastal Res., v.32, pp.264–279, doi:https://doi.org/10.2112/JCOASTRES-D-14-00109.1.

    Google Scholar 

  • Mallinson, D.J., Smith, C.W., Culver, S.J., Riggs, S.R. and Ames, D. (2010) Geological characteristics and spatial distribution of paleo-inlet channels beneath the outer banks barrier islands, North Carolina, USA. Estuarine, Coastal and Shelf Science, v.88, pp.175–189, doi:https://doi.org/10.1016/j.ecss.2010.03.024.

    Article  Google Scholar 

  • Manchanda, M.L. and Hilwig, F.W. (1981) Visual interpretation of computer transformed Landsat imagery for salt affected areas of part of Haryana. Jour. Indian Soc. Photo-Interpretation and Remote Sens., v.9, pp.1–11, doi:https://doi.org/10.1007/BF02991458.

    Article  Google Scholar 

  • Mantelli, L.R., Rossetti, D. de F., Albuquerque, P.G., Valeriano, M. de M. (2009) Applying SRTM digital elevation model to unravel Quaternary drainage in forested areas of Northeastern Amazonia. Computers and Geosciences, v.35, pp.2331–2337, doi:https://doi.org/10.1016/j.cageo.2009.04.011.

    Article  Google Scholar 

  • Mccauley, J.F., Schaber, G.G., Breed, C.S., Grolier, M.J., Haynes, C.V., Issawi, B., Elachi, E., Blom, R. (1982) Subsurface valleys and geoarcheology of the Eastern Sahara revealed by shuttle radar. Science, v.218, pp.1004–1020, doi:https://doi.org/10.1126/science.218.4576.1004.

    Article  Google Scholar 

  • Mohindra, R., Parkash, B., Prasad, J. (1992) Historical geomorphology and pedology of the Gandak Megafan, Middle Gangetic Plains, India. Earth Surface Processes and Landforms, v.17, pp.643–662, doi:https://doi.org/10.1002/esp.3290170702.

    Article  Google Scholar 

  • Mukerji, A.B. (1976) Terminal fans of inland streams in Sutlej-Yamuna Plain, India. Z. Geomorph. N.F., v.20, pp.190–204.

    Google Scholar 

  • Muralikrishnan, S., Pillai, A., Narender, B., Reddy, S., Venkataraman, V.R., Dadhwal, V.K. (2013) Validation of Indian National DEM from Cartosat-1 Data. Journal of the Indian Society of Remote Sensing, v.41, pp.1–13, doi:https://doi.org/10.1007/s12524-012-0212-9.

    Article  Google Scholar 

  • Møller, I. and Anthony, D. (2003) A GPR study of sedimentary structures within a transgressive coastal barrier along the Danish North Sea coast. Geol. Soc. London, Spe. Publ., v.211 (1), pp.55–65.

    Article  Google Scholar 

  • Moorman, B.J. (1990) Assessing the ability of ground penetrating radar to delineate subsurface fluvial lithofacies (Master’s thesis, University of Calgary).

  • Neal, A. (2004) Ground-penetrating radar and its use in sedimentology: principles, problems and progress. Earth Sci. Rev., v.66, pp.261–330, doi:https://doi.org/10.1016/j.earscirev.2004.01.004.

    Article  Google Scholar 

  • Nimnate, P., Thitimakorn, T., Choowong, M., Hisada, K. (2017) Imaging and locating paleo-channels using geophysical data from meandering system of the Mun River, Khorat Plateau, Northeastern Thailand. Open Geosciences, v.9, pp. 675–688, doi:https://doi.org/10.1515/geo-2017-0051.

    Article  Google Scholar 

  • Parkash, B., Sharma, R.P., Roy, A.K. (1980) The Siwalik group (Molasse) — Sediments shed by collision of continental plates. Sediment. Geol., v.25, pp.127–159, doi:https://doi.org/10.1016/0037-0738(80)90058-5.

    Article  Google Scholar 

  • Parkash, B., Awasthi, A.K., Gohain, K. (1983) Lithofacies of the Markanda Terminal Fan, Kurukshetra District, Haryana, India. In: Modern and Ancient Fluvial Systems. Oxford, UK, Blackwell Publishing Ltd., pp.337–344., doi:https://doi.org/10.1002/9781444303773.ch27.

    Chapter  Google Scholar 

  • Patel, N.K., Pati, P., Verma, A.K., Dash, C., Gupta, A., Sharma, V. (2020) Seismicity around the Mahendragarh-Dehradun basement fault in the western Ganga plain, India: a neotectonic perspective. Internat. Jour. Earth Sci., v.109, pp.689–706, doi:https://doi.org/10.1007/s00531-020-01826-8.

    Article  Google Scholar 

  • Pati, P., Parkash, B., Awasthi, A.K., Acharya, V. (2011) Holocene tectono-geomorphic evolution of parts of the Upper and Middle Gangetic plains, India. Geomorphology, v.128, pp.148–170, doi:https://doi.org/10.1016/j.geomorph.2011.01.001.

    Article  Google Scholar 

  • Pati, P., Parkash, B., Awasthi, A.K., Jakhmola, R.P. (2012) Spatial and temporal distribution of inland fans/terminal fans between the Ghaghara and Kosi rivers indicate eastward shift of neotectonic activities along the Himalayan front. A study from parts of the upper and middle Gangetic plains, India. Earth-Sci. Rev., v.115, pp.201–216, doi:https://doi.org/10.1016/j.earscirev.2012.10.006.

    Article  Google Scholar 

  • Pati, P., Pradhan, R.M., Dash, C., Parkash, B., Awasthi, A.K. (2015) Terminal fans and the Ganga plain tectonism: A study of neotectonism and segmentation episodes of the Indo-Gangetic foreland basin, India. Earth-Sci. Rev., v.148, pp.134–149, doi:https://doi.org/10.1016/j.earscirev.2015.06.002.

    Article  Google Scholar 

  • Pati, P., Acharya, V., Verma, A.K., Patel, N.K., Jakhmola, R.P., Dash, C., Sharma, V., Gupta, A., Parkash, B., Awasthi, A.K. (2018) Holocene tectono-geomorphic evolution of Haryana plains, Western Ganga plain, India. Arabian Jour. Geosci., v.11, pp.1–27, doi:https://doi.org/10.1007/s12517-018-3714-0.

    Google Scholar 

  • Pati, P., Verma, A.K., Dash, C., Patel, N.K., Gupta, A., Sharma, V., Jakhmola, R.P., Parkash, B., Awasthi, A.K., Saraf, A.K. (2019) Influence of neotectonism on geomorphology and depositional architecture of the Gandak megafan, middle Ganga plain, India. Geomorphology, v.327, pp.489–503, doi:https://doi.org/10.1016/j.geomorph.2018.11.029.

    Article  Google Scholar 

  • Plati, C. and Loizos, A. (2013) Estimation of in-situ density and moisture content in HMA pavements based on GPR trace reflection amplitude using different frequencies. Journal of Applied Geophysics, v.97, pp.3–10, doi:https://doi.org/10.1016/j.jappgeo.2013.04.007.

    Article  Google Scholar 

  • Prasad, P. and Loveson, V.J. (2020) Signature of buried channels as deduced from subsurface GPR survey at Southwest coast of Tamil Nadu, India. Arabian Jour. Geosci., v.13, pp.1–12, doi:https://doi.org/10.1007/s12517-020-05439-y.

    Google Scholar 

  • Raiverman, V., Kunte, S.V., Mukherjea, A. (1983) Basin geometry, Cenozoic sedimentation and hydrocarbon prospects in northwestern Himalaya and Indo-Gangetic plains. Petroleum Asia Jour, v.6, pp. 67–92.

    Google Scholar 

  • Rajawat, A.S., Verma, P.K., Nayak, S. (2003) Reconstruction of palaeodrainage network in northwest India: retrospect and prospects of remote sensing based studies. Proc. Indian National Sci. Acad., v.69, pp.217–230.

    Google Scholar 

  • Rao, M.B.R. (1973) The subsurface geology of the Indo-Gangetic plains. Jour. Geol. Soc. India, v.14, pp.217–242.

    Google Scholar 

  • Rathore, V.S., Nathawat, M.S., Champatiray, P.K. (2010) Palaeochannel detection and aquifer performance assessment in Mendha River catchment, Western India. Jour. Hydrol., v.395, pp.216–225, doi:https://doi.org/10.1016/j.jhydrol.2010.10.026.

    Article  Google Scholar 

  • Resmi, M.R., Achyuthan, H., Jaiswal, M.K. (2017) Holocene tectonic uplift using geomorphometric parameters, GIS and OSL dating: Palar River basin, southern peninsular India. Zeitschrift fur Geomorphologie, v.61, pp.243–265, doi:https://doi.org/10.1127/zfg/2017/0433.

    Article  Google Scholar 

  • Rossetti, D.F. and Valeriano, M.M. (2007) Evolution of the lowest amazon basin modeled from the integration of geological and SRTM topographic data. Catena, v.70, pp.253–265, doi:https://doi.org/10.1016/j.catena.2006.08.009.

    Article  Google Scholar 

  • Sahu, S., Raju, N.J., Saha, D. (2010) Active tectonics and geomorphology in the Sone-Ganga alluvial tract in mid-Ganga Basin, India. Quaternary Internat., v.227, pp.116–126, doi:https://doi.org/10.1016/j.quaint.2010.05.023.

    Article  Google Scholar 

  • Saini, H.S. and Mujtaba, S.A.I. (2012) Depositional history and palaeoclimatic variations at the northeastern fringe of Thar Desert, Haryana plains, India. Quaternary Internat., v.250, pp.37–48, doi:https://doi.org/10.1016/j.quaint.2011.06.002.

    Article  Google Scholar 

  • Samadder, R.K., Kumar, S., Gupta, R.P. (2011) Paleochannels and their potential for artificial groundwater recharge in the western Ganga plains. Jour. Hydrol., v.400, pp.154–164, doi:https://doi.org/10.1016/j.jhydrol.2011.01.039.

    Article  Google Scholar 

  • Sastri, V. V., Bhandari, L.L., Raju, A.T.R., Datta, A.K. (1971) Tectonic framework and subsurface stratigraphy of the Ganga basin. Jour. Geol. Soc. India, v.12, pp.222–233.

    Google Scholar 

  • Saxena, A., Trivedi, A., Chauhan, M.S., Sharma, A. (2015) Holocene vegetation and climate change in Central Ganga Plain: A study based on multiproxy records from Chaudhary-Ka-Tal, Raebareli District, Uttar Pradesh, India. Quaternary Internat., v.371, pp.164–174, doi:https://doi.org/10.1016/j.quaint.2015.01.041.

    Article  Google Scholar 

  • Schrott, L. and Sass, O. (2008) Application of field geophysics in geomorphology: Advances and limitations exemplified by case studies. Geomorphology, v.93, pp.55–73, doi:https://doi.org/10.1016/j.geomorph.2006.12.024.

    Article  Google Scholar 

  • Shukla, U.K. (2009) Sedimentation model of gravel-dominated alluvial piedmont fan, Ganga Plain, India. Internat. Jour. Earth Sci., v.98, pp.443–459, doi:https://doi.org/10.1007/s00531-007-0261-4.

    Article  Google Scholar 

  • Shukla, U.K. and Bora, D.S. (2003) Geomorphology and sedimentology of Piedmont zone, Ganga Plain, India. Curr. Sci., v,84, pp.1034–1040.

    Google Scholar 

  • Shukla, U.K. and Raju, N.J. (2008) Migration of the Ganga river and its implication on hydro-geological potential of Varanasi area, U.P., India. Jour. Earth System Sci., v.117, pp.489–498, doi:https://doi.org/10.1007/s12040-008-0048-4.

    Article  Google Scholar 

  • Shukla, U.K., Singh, I.B., Sharma, M., Sharma, S. (2001). A model of alluvial megafan sedimentation: Ganga Megafan. Sediment. Geol., v.144, pp.243–262, doi:https://doi.org/10.1016/S0037-0738(01)00060-4.

    Article  Google Scholar 

  • Shukla, U.K., Bora, D.S., Singh, C.K. (2009) Geomorphic positioning and depositional dynamics of river systems in Lower Siwalik basin, Kumaun Himalaya. Jour. Geol. Soc. India, v.73, pp.335–354, doi:https://doi.org/10.1007/s12594-009-0014-z.

    Article  Google Scholar 

  • Shukla, U.K., Srivastava, P., Singh, I.B. (2012) Migration of the Ganga River and development of cliffs in the Varanasi region, India during the late Quaternary: Role of active tectonics. Geomorphology, v.171, pp.101–113, doi:https://doi.org/10.1016/j.geomorph.2012.05.009.

    Article  Google Scholar 

  • Singh, A.P., Arya, A.K., Singh, D. Sen. (2020) Morphometric Analysis of Ghaghara River Basin, India, Using SRTM Data and GIS. Jour. Geol. Soc. India, v.95, pp.169–178, doi:https://doi.org/10.1007/s12594-020-1406-3.

    Article  Google Scholar 

  • Singh, I.B. (1996) Geological evolution of Ganga Plain—an overview. Jour. Palaeontol. Soc. India, v.41, pp.99–137.

    Google Scholar 

  • Singh, I.B. (2005) Climate Change and Human History in Ganga Plain during Late Pleistocene-Holocene. Palaeobotanist, v.54, pp.1–12.

    Google Scholar 

  • Singh, S., Parkash, B., Rao, M.S., Arora, M., Bhosle, B. (2006) Geomorphology, pedology and sedimentology of the Deoha/Ganga-Ghaghara Interfluve, Upper Gangetic Plains (Himalayan foreland basin)-extensional tectonic implications. Catena, v.67, pp.183–203, doi:https://doi.org/10.1016/j.catena.2006.03.013.

    Article  Google Scholar 

  • Singh, A., Paul, D., Sinha, R., Thomsen, K.J., Gupta, S. (2016) Geochemistry of buried river sediments from Ghaggar Plains, NW India: Multi-proxy records of variations in provenance, paleoclimate, and paleovegetation patterns in the Late Quaternary. Palaeogeo., Palaeoclimat., Palaeoecol., 449, pp. 85–100, doi:https://doi.org/10.1016/j.palaeo.2016.02.012.

    Article  Google Scholar 

  • Singh, D. Sen. (2018) The Yamuna River: Longest Tributary of Ganga. In: The Indian Rivers. Springer, pp.123–133., doi:https://doi.org/10.1007/978-981-10-2984-4_10.

  • Singh, D. Sen and Awasthi, A. (2011) Natural hazards in the Ghaghara River area, Ganga Plain, India. Natural Hazards, v.57, pp.213–225, doi:https://doi.org/10.1007/s11069-010-9605-7.

    Article  Google Scholar 

  • Singhai, S.K., Parkash, B., Manchanda, M.L. (1991) Geomorphological and pedological evolution of Haryana State. Bull. ONGC, v.28, pp.37–60.

    Google Scholar 

  • Sinha, R., Jain, V., Babu, G.P., Ghosh, S. (2005) Geomorphic characterization and diversity of the fluvial systems of the Gangetic Plains. Geomorphology, v.70, pp.207–225, doi:https://doi.org/10.1016/j.geomorph.2005.02.006.

    Article  Google Scholar 

  • Sinha, R., Ahmad, J., Gaurav, K., Morin, G. (2014) Shallow subsurface stratigraphy and alluvial architecture of the Kosi and Gandak megafans in the Himalayan foreland basin, India. Sediment. Geol., v.301, pp.133–149, doi:https://doi.org/10.1016/j.sedgeo.2013.06.008.

    Article  Google Scholar 

  • S3owik, M. (2012) Influence of measurement conditions on depth range and resolution of GPR images: The example of lowland valley alluvial fill (the Obra River, Poland). Jour. Appl. Geophy., v.85, pp.1–14, doi:https://doi.org/10.1016/j.jappgeo.2012.06.007.

    Article  Google Scholar 

  • Smith, D.G. and Jol, H.M. (1995) Ground penetrating radar: antenna frequencies and maximum probable depths of penetration in Quaternary sediments. Jour.Appl. Geophys., v.33, pp.93–100, doi:https://doi.org/10.1016/0926-9851(95)90032-2.

    Article  Google Scholar 

  • Srivastava, P. and Misra, D.K. (2012) Optically Stimulated Luminescence chronology of terrace sediments of Siang River, Higher NE Himalaya: Comparison of quartz and feldspar chronometers. Jour. Geol. Soc. India, v.79, pp.252–258, doi:https://doi.org/10.1007/s12594-012-0043-x.

    Article  Google Scholar 

  • Srivastava, P., Parkash, B., Sehgal, J.L., Kumar, S. (1994) Role of neotectonics and climate in development of the Holocene geomorphology and soils of the Gangetic Plains between the Ramganga and Rapti rivers. Sediment. Geol., v.94, pp.129–151, doi:https://doi.org/10.1016/0037-0738(94)90151-1.

    Article  Google Scholar 

  • Srivastava, P., Shukla, U.K., Mishra, P., Sharma, M., Sharma, S., Singh, I.B., Singhvi, A.K. (2000) Luminescence chronology and facies development of Bhur sands in the interfluve region of Central Ganga Plain, India. Curr. Sci., v.78(4), pp.498–503.

    Google Scholar 

  • Srivastava, P., Sharma, M., Singhvi, A.K. (2003) Luminescence chronology of incision and channel pattern changes in the River Ganga, India. Geomorphology, v.51, pp.259–268, doi:https://doi.org/10.1016/S0169-555X(02)00223-4.

    Article  Google Scholar 

  • Sun, G., Ranson, K.J., Kharuk, V.I., Kovacs, K. (2003) Validation of surface height from shuttle radar topography mission using shuttle laser altimeter. Remote Sens. Environ., v.88, pp.401–411, doi:https://doi.org/10.1016/j.rse.2003.09.001.

    Article  Google Scholar 

  • Torrese, P., Rainone, M.L., Colantonio, F., Signanini, P. (2013) Application of 1D-2D electrical resistivity surveys to the identification and investigation of shallow paleochannels in the Chamelecòn Valley (Honduras). Rendiconti Online Societa Geologica Italiana, v.24, pp.316–318.

    Google Scholar 

  • Upadhyay, R., Sharma, N., Sharma, M. (2021) Delineation and mapping of palaeochannels using remote sensing, geophysical, and sedimentological techniques: A comprehensive approach. Water Sci., v.35, pp.100–108, doi:https://doi.org/10.1080/23570008.2021.1941691.

    Article  Google Scholar 

  • Verma, A.K., Pati, P., Sharma, V. (2017) Soft sediment deformation associated with the East Patna Fault south of the Ganga River, northern India: Influence of the Himalayan tectonics on the southern Ganga plain. Jour. Asian Earth Sci., v.143, pp.109–121, doi:https://doi.org/10.1016/j.jseaes.2017.04.016.

    Article  Google Scholar 

  • Weymer, B.A., Wernette, P., Everett, M.E., Houser, C. (2018) Statistical modeling of the long-range-dependent structure of barrier island framework geology and surface geomorphology. Earth Surface Dynamics, v.6, pp.431–450, doi:https://doi.org/10.5194/esurf-6-431-2018.

    Article  Google Scholar 

  • Zhang, S., Ma, Y., Chen, F., Liu, J., Chen, F., Lu, S., Jiang, L., Li, D (2020) A new method for supporting interpretation of paleochannels in a large scale-Detrended Digital Elevation Model Interpretation. Geomorphology, v.369, pp.107374, doi:https://doi.org/10.1016/j.geomorph.2020.107374.

    Article  Google Scholar 

Download references

Acknowledgements

This research was financially supported by the Ministry of Human Resource Development (MHRD), India. Thanks to Hemant Meena and Shivam K. Singh for their fieldwork and GIS-related work. We also sincerely thank Prof. Vipul Silwal (Geophysicist) for his valuable input in GPR data analysis and interpretation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pitambar Pati.

Electronic supplementary material

12594_2022_2010_MOESM1_ESM.pdf

Mapping of the Buried Paleochannels on the Terminal Fans in the Western Ganga Plain: A Geomorphological and Ground Penetrating Radar-based Approach

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patel, N.K., Pati, P. Mapping of the Buried Paleochannels on the Terminal Fans in the Western Ganga Plain: A Geomorphological and Ground Penetrating Radar-based Approach. J Geol Soc India 98, 525–537 (2022). https://doi.org/10.1007/s12594-022-2010-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12594-022-2010-5

Navigation