Skip to main content

Advertisement

Log in

Factors Controlling the Distribution of Agglutinated Foraminiferal Morphogroups as Palaeoenvironmental Tracers in the Kharga Oasis, Egypt

  • Original Article
  • Published:
Journal of the Geological Society of India

Abstract

The present authors used the scanning electron microscopy and energy dispersive spectroscopy methodology as a standard approach for micropaleontological studies to detect test internal morphological and compositional features of agglutinated foraminifera grains collected from Maastrichtian-Paleogene of the Dakhla Oasis of Egypt.

Five main morphogroups dominate Lower Kharga Member, the mixture of infaunal and epifaunal morphogroups indicating mesotrophic conditions during that time. All evolving new species found in the Early Paleocene are small and species richness remains low with small simple test morphologies resembling the under zone CF3 with a new appearance of morphogroup epifaunal flattened planispiral.

Zone CF3 of Lower Kharga Member is characterized by the appearances of small-sized Trochammina which are associated with stressful environmental conditions. Zone P1c of the Upper Kharga Member is characterized by high percentages of calcareous agglutinated foraminifera and abundance of granular calcite and hyaline tests, which explained a sufficient quantity of calcium carbonate dissolved in the water and warm water basin. The strong decrease in diversity and heterogeneity of the assemblages, as well as the drastic drop in the number of infaunal elongated morphogroup coincident with the hiatus between CF3 and P1c (Maastrichtian/Danian boundary), indicate a dramatic decrease in the food supply to the sea-bottom floor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alegret, L., Molina, E., Thomas, E. (2001) Benthic foraminifera at the Cretaceous/Tertiary boundary around the Gulf of Mexico. Geology, v.29, pp.891–894.

    Article  Google Scholar 

  • Alegret, L., Molina, E., Thomas, E. (2003) Benthic foraminiferal turnover across the Cretaceous/Tertiary boundary at Agost (southeastern Spain): paleoenvironmental inferences. Marine Micropaleontology, v.48, pp.251–279.

    Article  Google Scholar 

  • Ali, M.Y. (2003) Micropaleontological and stratigraphical analyses of the Late Cretaceous/Early Tertiary succession of the southern Nile Valley (Egypt). Der Fakultat fur Geowissenschaften an der Ruhr-Universitat Bochum vorgelegte Dissertation zur Erlangung des Grades eines, pp.1–197.

  • Almogi-Labin, A., Bein, A., Sass, E. (1990) Agglutinated foraminifera in organic-rich neritic carbonates (Upper Cretaceous, Israel) and their use in identifying oxygen levels in oxygen-poor environments. In: Hemleben, C., Kaminski, M.A., Kuhnt, W., Scott, D.B. (Eds.), Paleoecology, Biostratigraphy, Paleoceanography and Taxonomy of Agglutinated Foraminifera. Kluwer Academic Publishers, pp.565–585.

  • Alve, E., Murray, J.W. (1995) Experiments to determine the origin and palaeoenvironmental significance of agglutinated foraminiferal assemblages. In: Kaminski, M.A., Geroch, S. and Gasiñski, M.A. eds., Proceedings of the Fourth International Workshop on Agglutinated Foraminifera: Grzybowski Foundation Spec. Publ., no.3, pp.1–11.

  • Armynot Du Châtelet, E., Bout-Roumazeilles, V., Coccioni, R., Frontalini, F., Guillot, F., Kaminski, M. A., Recourt, P., Riboulleau, A., Trentesaux, A., Tribovillard, N., Ventalon, S. (2013) Environmental control on shell structure of agglutinated foraminifera in the Marmara Sea. Marine Geol., v.335, pp.114–128.

    Article  Google Scholar 

  • Arz J.A., Molina E. (2002) Bioestratigrafía y cronoestratigrafía con foraminíferos planctónicos del Campaniense superior y Maastrichtiense de latitudes subtropicales y templadas (España, Francia, y Tunicia). Neu. Jahr. für Geol. Paläontologie Abhandlungen, v.224, pp.161–195.

    Google Scholar 

  • Awad, G.A., Ghobrial, M.G., (1966) Zonal stratigraphy of the Kharga Oasis. Geol. Surv., Paper 34, 77 p.

  • Barbosa, C.F., Scott, D., Seoane, J.C.S., Turcq, B.J. (2005) Foraminiferal zonations as baselines for Quaternary sea-level fluctuations in South-Southeast Brazilian Mangroves and marshes. Jour. Foraminiferal Res., v.35, pp.22–43.

    Article  Google Scholar 

  • Barthel, W.K., Herrmann-Degen, W. (1981) Late Cretaceous and early Tertiary stratigraphy in the Great Sand Sea and its SE margins (Farafra and Dakhla oases, SW Desert Egypt). Mitteil. Bayerisc. Staatssamm. Paläontol. Hist. Geol., v.21, pp.141–182.

    Google Scholar 

  • Bartholdy, J., Leipe, T., Frenzel, P., Tauber, F., Bahlo, R. (2005) High resolution single particle analysis by scanning electron microscopy: a new tool to investigate the mineral composition of agglutinated foraminifers. Methods Appl. Micropalaeontol., v.124, pp.53–65.

    Google Scholar 

  • Bernhard, J.M. (1986) Characteristic assemblages and morphologies of benthic foraminifera from anoxic, organic rich deposits: Jurassic through Holocene. Jour. Foraminiferal Res., v.16, pp.207–215.

    Article  Google Scholar 

  • Berggren, W.A. (1974) Paleocene benthonic foraminiferal biostratigraphy, biogeography, and paleoecology of Libya and Mali. Micropaleont., v.20, pp.449–465.

    Article  Google Scholar 

  • Berggren, W.A., Pearson, P.N. (2005) A revised tropical to subtropical Paleogene planktonic foraminiferal zonation. Jour. Foramin. Res., v.35, pp.279–298.

    Article  Google Scholar 

  • Berggren, W.A., Kent, D.V., Swisher, C.C., Aubry, M.P. (1995) A revised Cenozoic geochronology and chronostratigraphy. In: Berggren, W., Kent, D.V., Aubry, M.P., (Eds.), Hardenbol, Geochronology, Time Scale and Global Stratigraphic Correlation. Soc. Sediment. Geol., Spec. Publ., no.54, pp.129–212.

  • Boersma, A., Shackleton, N.J., Hall, M.A., Given, Q.C. (1979) Carbon and oxygen isotope records at DSDP Site 384 (North Atlantic) and some Paleogene paleotemperatures and carbon isotope variations in the Atlantic Ocean. Init. Rep. DSDP, vol.43, p.695717.

    Google Scholar 

  • Bowser, S.S., Bernhard, J.M. (1995) Structure, bioadhesive distribution and elastic properties of the test of Astramminarara (Protozoa; Foraminiferida). Jour. Eukaryotic Microbiol., v.40, pp.121–131.

    Article  Google Scholar 

  • Brasier, M.D. (1981) Architecture and evolution of the foraminiferid test. A theoretical approach. In: F.T. Banner and A.R. Lord (eds). Aspects of Micropaleontology. George Allen & Unwin. London, pp.1–41.

    Google Scholar 

  • Buzas, M.A. (1974) Vertical Distribution of Foraminifera in the Indian River, Florida. Jour. Foraminiferal Res., v.7(3), pp.234–237.

    Article  Google Scholar 

  • Caron, M. (1985) Cretaceous planktonic foraminifera. In: Bolli, H., Saunders, J., Perch-Nielsen, K. (Eds.), Plankton Stratigraphy. Cambridge University Press, Cambridge, pp.17–86.

    Google Scholar 

  • Chamney, T.P. (1976) Foraminifera1 morphogroup symbol for paleoenvironmental interpretation of drill cutting samples: Arctic America, Albian continental margin. Maritime Sediments, Spec. Publ., 1B, pp.585–624.

  • Chen, H, et al. (2020) Salt-Marsh Foraminiferal Distributions from Mainland Northern Georgia, USA: An Assessment of Their Viability for Sea-Level Studies. Open Quaternary, 6: 6, pp.1–19. doi: https://doi.org/10.5334/oq.80.

    Google Scholar 

  • Coccioni, R., Frontalini, F., Bancalà, G., Fornaciari, E., Jovane, L., Sprovieri, M. (2010) The Dan-C2 hyperthermal event at Gubbio (Italy): Global implications, environmental effects, and cause(s): Earth Planet. Sci. Lett., v.297, pp.298–305, doi: https://doi.org/10.1016/j.epsl.2010.06.031.

    Google Scholar 

  • Conoco Coral (1987) Geological map of Egypt, Scale 1: 500,000. Sheet no.11 (Geological map of Assiut area). The Egyptian General Petroleum Corporation.

  • Corliss, B.H. (1985) Microhabitats of benthic foraminifera within deep-sea sediments. Nature, v.314, pp.435–438.

    Article  Google Scholar 

  • Corliss, B.H., Chen, C. (1988) Morphotype patterns of Norwegian Sea deep-sea benthic foraminifera and ecological implications. Geology, v.16, pp.716–719.

    Article  Google Scholar 

  • Courtillot, V., Fluteau, F. (2014) A review of the embedded time scales of flood basalt volcanism with special emphasis on dramatically short magmatic pulses, In: Keller, G., and Kerr, A.C. (Eds.), Volcanism, Impacts, and Mass Extinctions: Causes and Effects. Geol. Soc. Amer. Spec. Paper 505, doi:https://doi.org/10.1130/2014.2505(15).

  • Culver, S.J. (2003) Benthic foraminifera across the Cretaceous-Tertiary (K-T) boundary: a review: Marine Micropaleontology, v.47, pp.177–226.

    Article  Google Scholar 

  • Deer, W.A., Howie, R.A., Zussman, J. (1966) An Introduction to the Rock-forming Minerals, 2nd edn. Longman Scientific and Technical, Harlow, 528p.

    Google Scholar 

  • D’Hondt, S., Donaghay, P., Zachos, J.C., Luttenberg, D., Lindinger, M. (1998) Organic carbon fluxes and ecological recovery from the Cretaceous-Tertiary mass extinction. Science, v.282, pp.276–79.

    Article  Google Scholar 

  • Embabi, N.A. (2004) The Geomorphology of Egypt: land form as and evolution. Vol.1: the Nile Valley and Western Desert. Egypt. Geographic society, special Pub. Rocks in Egypt. Annual Meeting. Geol. Soc. Egypt, Cairo, June 12.

  • Frijia, G., Di Lucia, M., Vicedo, V., Gunter, C., Ziemann, M. A., Mutti, M. (2012) An extraordinary single-celled architect: a multi-technique study of the agglutinated shell of the larger foraminifer Mesorbitolina from the Lower Cretaceous of southern Italy. Marine Micropaleontology, v.90–91, pp.60–71.

    Article  Google Scholar 

  • Greiner, G.O.G. (1974) Environmental factors controlling the distribution of recent benthonic foraminifera. Breviora, v.420, pp.1–35.

    Google Scholar 

  • Gooday, A.J., Malzone, M.G., Bett, B.J., Lamont, P.A. (2010) Decadal-scale changes in shallow-infaunal foraminiferal assemblages at the Porcupine Abyssal Plain, NE Atlantic. Deep-Sea Res. II Top. Stud. Oceanogr., v.57, pp.1362–1382. doi:https://doi.org/10.1016/j.dsr2.2010.01.012.

    Article  Google Scholar 

  • Haman, D. (1983) Modem Textulariina (Foraminiferida) from the Balize Delta, Louisiana. In: Verdenius, J.G. et al. (Eds.), Proceedings of the First Workshop on Arenaceous Foraminifera, Continental Shelf Institute, Norway, Publication, no.108, pp.59–87.

    Google Scholar 

  • Haq, B.U., Hardenbol, J., Vail, P.R. (1987) Chronology of fluctuating sea-levels since the Triassic. Science, v.235, pp.1156–1167.

    Article  Google Scholar 

  • Hawkes, A.D., Horton, B.P., Nelson, A.R., Hill, D.F.D. (2010) The application of intertidal foraminifera to reconstruct coastal subsidence during the giant Cascadia earthquake of AD 1700 in Oregon, USA. Quaternary Internat., v.221, pp.116–140.

    Article  Google Scholar 

  • Hawkes, A.D., Kemp, A.C., Donnelly, J.P., Horton, B.P., Peltier, W.R., Cahill, N., Hill, D.F., Ashe, E., Alexander, C.R. (2016) Relative sea-level change in northeastern Florida (USA) during the last ∼8.0 ka. Quaternary Sci. Rev., pp.90–101. doi:https://doi.org/10.1016/j.quascirev.2016.04.016.

  • Hedley, R.H. (1964) The biology of foraminifera. International Review of General and Experimental Zoology, v.1, pp.145.

    Google Scholar 

  • Henehan, M.J. et al. (2019) Rapid ocean acidification and protracted Earth system recovery followed the end-Cretaceous Chicxulub impact. www.pnas.org/cgi/doi/10.1073/pnas.1905989116.

  • Hewaidy, A.A., Cherif, O.H. (1984) Contribution to the bathymetric variations of the Late Cretaceous Sea over the Abu Tartur area by using Foraminifera. Annals Geol. Surv. Egypt. v.15, pp.231–241.

    Google Scholar 

  • Hewaidy, A.A., Farouk, S., Aly, H.A., Bazeen, Y.S. (2014) Maastrichtian to Paleocene agglutinated foraminifera from the Dakhla Oasis, Western Desert, Egypt. Egypt. Jour. Paleont., v.14, pp.1–38.

    Google Scholar 

  • Hollis, C., Jenns, E., Begbie, M. Pullin, A. (1995) Benthic foraminifera and other microbiotic remains in Waimamaku river estuary, West Coast, Northland. Tane, v.35, pp.195–2005.

    Google Scholar 

  • Hromic, T., Camblor, M. Quezada, L. (2012) Textularids foraminifers from recent shallow sediments of the Antarctic Peninsula and other relationship with Southern South American Region. Annales del Instituto da la Patagonia, v.40: pp.125–138.

    Article  Google Scholar 

  • Jain, S., Farouk, S., 2017. Shallow water agglutinated foraminiferal response to Late Cretaceous Early Paleocene sea-level changes in the Dakhla Oasis, Western Desert, Egypt. Cretaceous Res., v.78, pp.240–257. doi:https://doi.org/10.1016/j.Cretres.2017.06.012.

    Article  Google Scholar 

  • Jerrgensen, N.O. (1977) Wall structure of some arenaceous foraminifera from the Maastrichtian White Chalk (Denmark). Jour. Foraminiferal Res., v.7(3), pp.13–321.

    Google Scholar 

  • Jones, R.W., Charnock, M.A. (1985) “Morphogroups” of agglutinated foraminifera; their life positions and feeding habits and potential applicability in (paleo)ecological studies: Revue de Paléobiologie, v.4, pp.311–320.

    Google Scholar 

  • Kaminski, M.A., Kuhnt, W. (1995) Tubular agglutinated foraminifera as indicators of organic carbon flux. In: Kaminski, M.A. Geroch, S. and Gasinski, M.A. (Eds.), Proceedings of the Fourth International Workshop on Agglutinated Foraminifera: Grzybowski Foundation Spec. Publ., no.3, pp.141–144.

  • Kaminski, M.A., Gradstein, F.M. (2005) Atlas of Paleogene Cosmopolitan Deep-Water Agglutinated Foraminifera. Grzybowski Foundation Spec. Publ., no.10, 574+vii pp.

  • Keller, G., Abramovich, S. (2009) Lilliput effect in late Maastrichtian planktic foraminifera: response to environmental stress. Palaeogeogr. Palaeoclimat. Palaeoecol., v.284, pp.47–62.

    Article  Google Scholar 

  • Keller, G., Adatte, T., Stinnesbeck, W., Luciani, V., Karoui, N., Zaghbib- Turki, D. (2002a) Paleoecology of the Cretaceous-Tertiary mass extinction in planktic foraminifera: Palaeogeogr., Palaeoclimat., Palaeoecol., v.178, p. 257–297, doi:https://doi.org/10.1016/S0031-0182(01)00399-6.

    Article  Google Scholar 

  • Keller, G., Adatte, T., Burns, S.J., Tantawy, A.A. (2002b) High-stress paleoenvironment during the late Maastrichtian to early Paleocene in Central Egypt. Palaeogeogr., Palaeoclimat., Palaeoecol., v.187, pp.35–60.

    Article  Google Scholar 

  • Keller, G., Bhowmick, P.K., Upadhyay, H., Dave, A., Reddy, A.N., Jaiprakash, B.C., Adatte, T. (2011a) Deccan volcanism linked to the Cretaceous-Tertiary boundary (KTB) mass extinction: New evidence from ONGC wells in the Krishna-Godavari Basin, India. Jour. Geol. Soc. India, v.78, pp.399–428, doi:https://doi.org/10.1007/s12594-011-0107-3.

    Article  Google Scholar 

  • Keller, G., Abramovich, S., Adatte, T., Berner, Z. (2011b) Biostratigraphy, age of the Chicxulub impact, and depositional environment of the Brazos River KTB sequences, In: Keller, G., and Adatte, T., eds., The End-Cretaceous Mass Extinction and the Chicxulub Impact in Texas. Soc. Sediment. Geol. (SEPM) Spec. Publ., v.100, pp.81–122.

  • Keller, G., Punekar, J. Mateo, P. (2015) Upheavals during the late Maastrichtian: volcanism, climate and faunal events preceding the end-Cretaceous mass extinction. Paleogeogr. Paleoclimat., Paloecol., doi:https://doi.org/10.1016/j.palaeo.2015.01.019

  • Koutsoukos, E.A.M., Hart, M.B. (1990) Cretaceous foraminiferal morphogroup distribution patterns, palaeocommunities and trophic structures: a case study from the Sergipe Basin, Brazil. Transactions of the Royal Society of Edinburgh Earth Sciences 81, 221–246. https://doi.org/10.1017/S0263593300005253.

    Article  Google Scholar 

  • Koutsoukos, E.A.M., Leary, P.M., Hart, M.B. (1990) Latest Cenomanian-earliest Turonian low-oxygen tolerant benthonic foraminifera: a case study from the Sergipe Basin (N.E. Brazil) and the western Anglo-Paris Basin (southern England). Palaeogeogr. Palaeoclimat. Palaeoecol., v.77, pp.145–177.

    Article  Google Scholar 

  • Kring, D.A. (2007) The Chicxulub impact event and its environmental consequences at the Cretaceous-Tertiary boundary. Palaeogeogr. Palaeoclimat. Palaeoecol., v.255, pp.4–21.

    Article  Google Scholar 

  • Kuhnt, W., Kaminski, M.A. (1990) Paleoecology of Late Cretaceous to Paleocene deep-water Agglutinated Foraminifera from the North Atlantic and Western Tethys. In: Hemleben, C., Kaminski, M.A., Kuhnt, W. and Scott, D.B. (Eds.), Paleoecology, Biostratigraphy, Paleoceanography and Taxonomy of Agglutinated Foraminifera. NATO AS1 Series C.327, Kluwer Academic publishers, pp.433–505.

  • Kuhnt, W., Kaminski, M.A. (1993) Changes in the community structure of deep water agglutinated foraminifers across the K/T boundary in the Basque Basin (Northern Spain): Revista Española de Micropaleontología, v.25, pp.57–92.

    Google Scholar 

  • Li, L., Keller, G. (1998a) Maastrichtian climate, productivity and faunal turnover in planktic foraminifera in south Atlantic DSDP Sites 525 A and 21. Mar. Micropaleontol., v.33, pp.5–86.

    Article  Google Scholar 

  • Li, L., Keller, G. (1998b) Abrupt deep-sea warming at the end of the Cretaceous: Geology, v.26, pp.995–998, doi:https://doi.org/10.1130/0091-7613(1998)026-0995:ADSWAT-2.3.CO;2.

    Article  Google Scholar 

  • Li, L., Keller, G., Stinnesbeck, W. (1999) The Late Campanian and Maastrichtian in northwestern Tunisia: paleoenvironmental inferences from lithology, macrofauna and benthic foraminifera. Cretaceous Res., v.20, pp.231–252.

    Article  Google Scholar 

  • Lipps, J. H. (1971) Siliceous cement in agglutinated foraminifera? -Journ. Protozool., v. 18 (supplement), 30p.

  • Lipps J.H. (1973) Test structure in foraminifera. Annual Rev. Microbiol., v.27: pp.471–88. MID 4584693. doi: https://doi.org/10.1146/annurev.mi.27.100173.002351.

    Article  Google Scholar 

  • Løfaldli, M., Nagy, J. (1980) Foraminiferal stratigraphy of Jurassic deposits on Køngseya, Svalbard. Skr. Nor. Polarinst, v.172, pp.63–96.

    Google Scholar 

  • Lüger, P. (1985) Stratigraphie der marinen Oberkreide and des Alttertiarsim sudwestlichen Obernil-Becken (SW-Agypten) unter besonderer Berudcksichtigung der Mikropalaontologie, Palokologie. und Palaogeographie. Berliner geowissenschaftliche Abhandlungen v.63, pp.1–150.

    Google Scholar 

  • Lüger, P. (1988) Campanian to Paleocene agglutinated foraminifera from freshwater influenced marginal marine (Deltaic) sediments. Abhandlungen der Geologischen Bundesanstalt, v.41, pp.255–263.

    Google Scholar 

  • MacLeod, K. G., Huber, B. T., Isaza-Londono, C. (2005) North Atlantic warming during global cooling at the end of the Cretaceous. Geology, v.33, pp.437–440.

    Article  Google Scholar 

  • Makled, W.A., Langer, M.R. (2009) Preferential selection of titanium-bearing minerals in agglutinated Foraminifera: Ilmenite (FeTiO3) in Textularia hauerii d’Orbigny from the Bazaruto Archi — pelago, Mozambique. Rev. Micropaleontol., v.53, pp.163–173.

    Article  Google Scholar 

  • Mancin, N. (2001) Agglutinated foraminifera from the Epiligurian succession (Middle Eocene/Lower Miocene, Northern Apennines, Italy): Scanning electron microscopic characterization and paleoenvironmental implications. Jour. Foraminifer. Res., v.31(4), pp.294–308. doi:https://doi.org/10.2113/0310294

    Article  Google Scholar 

  • Murray, J.W. (1973) Wall structure of some agglutinated Foraminiferida. Paleontological Series, v.16, pp.777–786.

    Google Scholar 

  • Murray, J.W. (1991) Ecology and Palaeoecology of Benthic Foraminifera. Longman Scientific and Technical, England, 397p.

    Google Scholar 

  • Nagy, J., Lofaldli, M.L., Backstrom, S.A. (1988) Aspects of foraminiferal distribution and depositional conditions in Middle Jurassic to Early Cretaceous shales in Eastern Spitsbergen. Abhandlungen der Geologischen Bundesanstalt, v.41, pp.287–300.

    Google Scholar 

  • Nagy, J., Gradstein, F.M., Kaminski, M.A., Holbourn, A.E., (1995) Foraminiferal morphogroups, palaeoenvironments and new taxa from Jurassic to Cretaceous strata of Thakkhola, Nepal. Proceedings of the Fourth Internat. Workshop on Agglutinated Foraminifera v.3, pp.181–209.

  • Nagy, J., Kaminski, M.A., Johnsen, K., Mitlehner, A.G. (1997) Foraminiferal, palynomorph, and diatom biostratigraphy and paleoenvironments of the Tork Formation: a reference section for the Paleocene-Eocene transition in the western Barents Sea. In: Hass, H.C., Kaminski, M.A. (Eds.), Contributions to the Micropaleontology and Paleoceanography of the Northern North Atlantic. Grzybowski Foundation Spec. Publ., np.5, pp.15–38.

  • Nagy, J., Kaminski, M.A., Kuhnt, W., Bremer, M.A. (2000) Agglutinated foraminifera from neritic to bathyal facies in the Palaeogene of Spitsbergen and the Barents Sea. In: Hart, M.B., Kaminski, M.A. (Eds.), Proceedings of the Fifth International Workshop on Agglutinated Foraminifera. Grzybowski Foundation Spec. Publ., no.7, pp.333–361.

  • Nagy, J., Reolid, M., Rodríguez-Tovar, F. J. (2009) Foraminiferal morphogroups in dysoxic shelf deposits from the Jurassic of Spitsbergen. Polar Res., v.28, pp.1–8.

    Article  Google Scholar 

  • Nagy, J., Hess, S., Alve, E. (2010) Environmental significance of foraminiferal assemblages dominated by small-sized Ammodiscus and Trochammina in Triassic and Jurassic delta-influenced deposits. Earth-Sci. Rev., v.99, pp.31–49.

    Article  Google Scholar 

  • Orabi, H.O. (1995) Biostratigraphy and paleoecology of the Campanian-Paleocene agglutinated foraminifera from Gebel UmEl Ghanayim Kharga Oasis, Egypt. Sci. Jour. Fac. Sci. Menoufia Univ. XI, pp.25–68.

  • Orabi, H.O. (2020) Morphological abnormalities observed in the species Ammobaculites texanus Cushman and paleoenvironmental implications. Revue de micropaléontologie. 68. doi:https://doi.org/10.1016/j.revmic.2020.100444

  • Orabi, H.O., Khalil, H.M. (2014) Calcareous benthonic foraminifera across the Cretaceous/Paleocene transition of Gebel Um El-Ghanayem, Kharga Oasis, Egypt. Jour. African Earth Sci., v.96, pp.110–121. doi:https://doi.org/10.1016/j.jafrearsci.2014.03.017.

    Article  Google Scholar 

  • Orabi, H.O., Zahran, E. (2014) Paleotemperatures and paleodepths of the upper cretaceous rocks in El Qusaima, northeastern Sinai, Egypt. Jour. African Earth Sci., v.91, pp.79–88.

    Article  Google Scholar 

  • Podobina, V.M. (1975) Foraminifera of Upper Cretaceous and Paleogene of the western Siberian Lowlands and their significance for stratigraphy. Tomsk University Publishing House, 220p.

  • Pokorny, V., 1958. Grundzüge der Zoologischen Mikropaläontologie. — Band I, 582p., Deutscher Verlag Wiss., Berlin.

    Google Scholar 

  • Punekar, J., Mateo, P. and Keller, G. (2014a) Effects of Deccan volcanism on paleoenvironment and planktic foraminifera: A global survey. Geol. Soc. Amer., Spec.Paper 505.

  • Punekar, J., Keller, G., Khozyem, H.M., Hamming, C., Adatte, T., Tantawy, A.A., Spangenberg, J. (2014b) Late Maastrichtian-early Danian high stress environments and delayed recovery linked to Deccan volcanism: Cretaceous Res., v.49, pp.63–82.

    Article  Google Scholar 

  • Quillévéré, F., Norris, R.D., Kroon, D., Wilson, P.A. (2008) Transient ocean warming and shifts in carbon reservoirs during the early Danian: Earth Planet. Sci. Lett., v.265, pp.600–615, doi: https://doi.org/10.1016/j.epsl.2007.10.040.

    Google Scholar 

  • Rasmussen, J.A., Nohr-Hansen, H., Sheldon, E. (2003) Palaeoecology and palaeoenvironments of the Lower Palaeogene succession, offshore West Greenland. Marine Petrol. Geol., v.20, pp.1043–1073.

    Article  Google Scholar 

  • Ravizza, G., Peucker-Ehrenbrink, B. (2003) Chemostratigraphic evidence of Deccan volcanism from the marine osmium isotope record: Science, v.302, pp.1392–1395, doi:https://doi.org/10.1126/science.1089209.

    Article  Google Scholar 

  • Reolid, M., Rodríguez-Tovar, F.J., Nagy, J., Olóriz, F. (2008) Benthic foraminiferal morphogroups of mid to outer shelf environments of the Late Jurassic (Prebetic Zone, southern Spain): characterization of biofacies and environmental significance. Palaeogeogr. Palaeoclimat. Palaeoecol., v.261(3–4), pp.280–299.

    Article  Google Scholar 

  • Reolid, M., Nagy, J., Rodríguez-Tovar, F.J. (2010) Ecostratigraphic trends of Jurassic agglutinated foraminiferal assemblages as a response to sea-level changes in shelf deposits of Svalbard (Norway). Palaeogeogr. Palaeoclimat. Palaeoecol., v.293(1–2), pp.184–196.

    Article  Google Scholar 

  • Robinson, N., Ravizza, G., Coccioni, R., Peucker-Ehrenbrink, B., Norris, R. (2009) A high-resolution marine 187Os/188Os record for the late Maastrichtian: Distinguishing the chemical fingerprints of Deccan volcanism and the KP impact event: Earth Planet. Sci. Lett., v.281, pp.159–168, doi: https://doi.org/10.1016/j.epsl.2009.02.019.

    Google Scholar 

  • Said, R. (1962) The Geology of Egypt. Elsevier, Amsterdam.

    Google Scholar 

  • Salami, M.B. (1976) Biology of Trochammina cf. T. quadriloba Hoglund (1947), an agglutinating foraminifer. Jour. Foraminiferal Res., v.6, pp.142–153.

    Article  Google Scholar 

  • Schoene, B. et al. (2019) U-Pb constraints on pulsed eruption of the Deccan Traps across the end-Cretaceous mass extinction. Science v.363, pp.862–866.

    Article  Google Scholar 

  • Schulte, P. et al. (2010) The Chicxulub asteroid impact and mass extinction at the Cretaceous-Paleogene boundary. Science, v.327, pp.1214–1218.

    Article  Google Scholar 

  • Scott, D., Gradstein, F., Schaffer, C., Miller, A., Williamson, M. 1983. The recent as a key to the past: does it apply to agglutinated foraminiferal assemblages? In: Verdenius, J.G. et al. (Eds.), Proceedings of First Workshop on Arenaceous Foraminifera. Continental Shelf Institute, Norway, v.108, pp.147–157.

    Google Scholar 

  • Setoyama, E., Kaminski, M.A., Tyszka, J. (2011) The Late Cretaceous-Early Paleocene palaeobathymetric trends in the southwestern Barents Sea: Palaeoenvironmental implications. Palaeogeogr., Palaeoclimat., Palaeoecol., v.307, pp.44–58.

    Article  Google Scholar 

  • Setoyama, E. Kaminiski, M.A. and Tyszka, J. (2017) Late Cretaceous-Paleogene foraminiferal morphogroups as palaeoenvironmental tracers of the rifted Labrador margin, northern proto-Atlantic. In: Kaminski, M.A. and Alegret, L., (Eds.), Proceedings of the Ninth International Workshop on Agglutinated Foraminifera. Grzybowski Foundation Spec. Publ., no.22, pp.179–220.

  • Sliter, W.V. (1975) Foraminiferal life and residue assemblages from Cretaceous slope deposits. Geol. Soc. Amer. Bull., v.86, pp.897–906.

    Article  Google Scholar 

  • Sprain, C. J. et al., 2019. The eruptive tempo of Deccan volcanism in relation to the Cretaceous-Paleogene boundary. Science, v.363, pp.866–870.

    Article  Google Scholar 

  • Thomas, E. (1990a) Late Cretaceous through Neogene deep-sea benthic foraminifers (Maud Rise, Weddell Sea, Antarctica): In: Barker, P.F., Kennett, J.P., O’Connell, S.B., and Pisias, N.G. (Eds.), Proceedings ODP Scientific Results 113: College Station, Texas, Ocean Drilling Program, pp.571–594.

  • Thomas, E. (1990b) Late Cretaceous-early Eocene mass extinctions in the deep sea: in Sharpton, V.L. and Ward, P.W., eds., Global Catastrophes in Earth History: The Proceedings of an Interdisciplinary Conference on Impacts, Volcanism and Mass Mortality: Geol. Soc. Amer. Spec. Publ., no.247, Boulder, pp.481–495.

  • Thomsen, E., Rasmussen, T. L., 2008. Coccolith-agglutinating Foraminifera from the early Cretaceous and how they constructed their tests. Jour. Foraminifera Res., v.38(3), pp.193–214. doi:https://doi.org/10.2113/Gsjfr.38.3.193.

    Article  Google Scholar 

  • Towe, K.M. (1967) Wall structure and cementation in Haplophragmoides canariensis. — Cushm. Found. Foram. Res., Contr., v.18, pp.147–151.

    Google Scholar 

  • Tyszka, J., Kaminski, M.A. (1995) Factors controlling the distribution of agglutinated foraminifera in Aalenian-Bajocian dysoxic facies (Pieniny Klippen Belt, Poland). In: Kaminski, M.A., Geroch, S., Gasiñski, M.A. (Eds.), Proceedings of the Fourth International Workshop on Agglutinated Foraminifera. Grzybowski Foundation Spec. Publ., no.3, pp.271–291.

  • Verdenius, J.G., van Hinte, J.E. (1983) Central Norwegian-Greenland Sea: Tertiary arenaceous foraminifera, biostratigraphy and environment. Proceedings of the First Workshop Arenaceous Foraminifera, 7–9 Sept. 1981. Continental Shelf Institute Publication, no.108: pp.173–224

  • Widmark, J.G.V. (2000) Biogeography of terminal Cretaceous benthic foraminifera: deep-water circulation and trophic gradients in the deep South Atlantic. Cretaceous Res., v.21, pp.367–379.

    Article  Google Scholar 

  • Zachos, J.C., Arthur, M.A. (1986) Paleoceanography of the Cretaceous-Tertiary boundary event: inferences from stable isotopic and other data. Paleoceanography, v.1(1), pp.5–26.

    Article  Google Scholar 

Download references

Acknowledgments

We greatly appreciate the organizations that funded this research. The authors are grateful to Prof Dr. Jere H. Lipps for useful discussion and revised the version of the manuscript. The authors thank the anonymous reviewers for their very helpful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Malarkodi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Orabi, O.H., Malarkodi, N. & Zahran, E. Factors Controlling the Distribution of Agglutinated Foraminiferal Morphogroups as Palaeoenvironmental Tracers in the Kharga Oasis, Egypt. J Geol Soc India 98, 363–378 (2022). https://doi.org/10.1007/s12594-022-1988-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12594-022-1988-z

Navigation