Skip to main content
Log in

Geology of the Simlipal Volcano-sedimentary Basin of Singhbhum Revisited: A Simplistic Interpretation

  • Original Article
  • Published:
Journal of the Geological Society of India

Abstract

The status of the Proterozoic volcano-sedimentary Simlipal complex (covering latitudes 21°14′–22°20′N and longitudes 86°03′–86°35′E) of Singhbhum, eastern India remains unclear till date. The Simlipal complex has classically been designated to represent three layers of alternate spilitic volcanics and quartzite deposited in a geosyncline that unconformably overlies the meta-sedimentary Singhbhum Group of rocks. The study of the authors (entailing digital elevation map) bring out that the concentric ring-like outcrop pattern of Simlipal complex is only topography-controlled and repetitive bands of quartzite and volcanics do not exist. Further, it has been documented that the Simlipal complex comprises basemental weakly metamorphosed quartzite-phyllite (∼450m thick) heterolith unit (proposed Lulung Formation), which is followed upward by fresh, sub-horizontal (∼250m thick) volcanic unit (proposed Barehipani Formation) with local presence of peridotite-gabbro, and finally to quartz arenite unit (∼150m thick) as the topmost layer (proposed Jurunda Formation). The heterolith unit (proposed Lulung Formation) has been envisaged as a part of the older Singhbhum Group. The basaltic rocks (Barehipani Formation) correspond to calc-alkaline tectonic affinity based on geochemistry. We propose an arc-subduction related setting for the Simlipal complex which may be further confirmed through detailed major/trace elements and isotopic studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Álvaro, J.J., Ezzouhairi, H., Ayad, N.A., Charif, A., Solá, R. and Ribeiro, M.L. (2010) Alkaline lake systems with stromatolitic shorelines in the Ediacaran volcanosedimentary Ouarzazate Supergroup, Anti-Atlas, Morocco. Precambrian Res., v.179(1–4), pp.22–36.

    Article  Google Scholar 

  • Aubouin, J. (1965) Geosynclines. Elsevier, 1st Eds., 352p.

  • Bhattacharjee, S., Mulder, J.A., Roy, S., Chowdhury, P., Cawood, P.A. and Nebel, O. (2021) Unravelling depositional setting, age and provenance of the Simlipal volcano-sedimentary complex, Singhbhum craton: Evidence for Hadean crust and Mesoarchean marginal marine sedimentation. Precambrian Res., v.354, 106038. doi https://doi.org/10.1016/j.precamres.2020.106038.

    Article  Google Scholar 

  • Burke, K. and Dewey, J.F. (1973) Plume-generated triple junctions: Key indications in applying Plate Tectonics to old rocks. Jour. Geol., v.81, pp.406–433.

    Article  Google Scholar 

  • Chadwick, B., Ramakrishnan, M., Vasudev, V.N. and Viswanatha, M.N. (1989) Facies distribution and structure of a Dharwar volcano-sedimentary basin: evidence for Late Archaean transpression in Southern India? Jour. Geol. Soc. London, v.146, pp.825–834.

    Article  Google Scholar 

  • Chadwick, B., Ramakrishnan, M. and Viswanatha, M.N. (1985) Bababudan-A Late Archaean intracratonic volcano-sedimentary basin, Karnataka, Southern India. Part I: Stratigraphy and Basin Development. Jour. Geol. Soc. India, v.26, pp.769–801.

    Google Scholar 

  • Chadwick, B., Vasudev, V.N. and Jayaram, S. (1988) Stratigraphy and structure of Late Archaean, Dharwar volcanic and sedimentary rocks and their basement in a part of the Shimoga Basin, East of Bhadravathi, Karnataka. Jour. Geol. Soc. India, v.32, pp.1–19.

    Google Scholar 

  • Chakraborty, P.P., Dey, S. and Mohanty, S.P. (2010) Proterozoic platform sequences of Peninsular India: Implications towards basin evolution and supercontinent assembly. Jour. Asian Earth Sci., v.39(6), pp.589–607.

    Article  Google Scholar 

  • Chennakesavulu, N. and Sahu, K.C. (1980) On olivines and pyroxenes of Amjori sill, Simlipal complex, Mayurbhanj, Orissa. Jour. Geol. Soc. India, v.21, pp.211–231.

    Google Scholar 

  • Condie, K.C. (1989) Plate Tectonics and Crustal Evolution. Pergamon, New York, 3rd Eds, 476p.

  • Dewey, J.F. and Windley, B.F. (1981) Growth and Differentiation of Continental Crust. Phil. Trans. Roy. Soc. London, A. 301, pp.189–206.

    Article  Google Scholar 

  • Green, J.C. (1992) Proterozoic Rifts. In: K.C. Condie (Eds.), Development in Precambrian Geology 10. Proterozoic Crustal Evolution, pp.97–149.

  • Iyengar, S.V.P. and Banerjee, S. (1964) Magmatic Phases associated with the Pre-Cambrian Tectonics of Mayurbhanj District, Orissa, India. Report, 22nd Internat. Geol. Congress, v.10, pp.515–538.

    Google Scholar 

  • Kroner, A. (1977) Precambrian mobile belts of southern and eastern Africa — ancient sutures or sites of ensialic mobility? A case of crustal evolution towards plate tectonics. Tectonophysics, v.40, pp.101–135.

    Article  Google Scholar 

  • Mahabaleswar, B., Jayananda, M. and Peucat, J.J. (1995) Archaean high-grade gneiss complex from Satnur-Halagur-Sivasamudram areas, Karnataka, southern India: petrogenesis and crustal evolution. Jour. Geol. Soc. India, v.45, pp.33–49.

    Google Scholar 

  • Master, S., Cooper, G.R.J., Chakraborti, T.M. and Mukheerjee, T. (2019) First evidence for an impact origin of the >45 km diameter Simlipal ring structure, Singhbhum Craton, Odisha, India. 82nd Ann. Meet. Meteor. Soc. (LPI Contrib No. 2157), Abs. 6079.

  • Mazumder, R. (2005) Proterozoic Sedimentation and Volcanism in the Singhbhum crustal province, India and their implications. Sediment. Geol., v.176, pp.67–193.

    Article  Google Scholar 

  • Meert, J.G., Pandit, M.K., Pradhan, V.R., Banks, J., Sirianni, R., Stroud, M., Newstead B. and Gifford, J. (2010) Precambrian crustal evolution of Peninsular India: A 3.0 billion year odyssey. Jour. Asian Earth Sci., v.39(6), pp.483–515.

    Article  Google Scholar 

  • Misra, S. and Johnson, P.T. (2005) Geochronological constraints on evolution of Singhbhum mobile belt and associated basic volcanics of eastern Indian shield. Gondwana Res., v.8(2), pp.129–142.

    Article  Google Scholar 

  • Mukhopadhyay, D. and Matin, A. (2020) The Architecture and Evolution of the Singhbhum Craton. Episodes, v.43(1), pp.19–50.

    Article  Google Scholar 

  • Mullen, E.D. (1983) MnO/TiO2/P2O5: A major element discriminant for basaltic rocks of oceanic environments and its implication for petrogenesis. Earth Planet. Sci. Lett., v.62, pp.53–62.

    Article  Google Scholar 

  • Naqvi, S.M. and Rogers, J.J. (1987) Precambrian Geology of India. Oxford University Press, 223p.

  • Roy, A., Sarkar, A., Jeyakumar, S. and Ebihara, M. (2002) Sm-Nd age and mantle source characteristics of the Dhanjori volcanic rocks, eastern India. Geochem. Jour., v.36, pp.503–518.

    Article  Google Scholar 

  • Saha, A.K. (1994) Crustal Evolution of Singhbhum-North Orissa, Eastern India. Mem. Geol. Soc. India, no.27, 341p.

  • Saha, A.K., Ray, S.L. and Sarkar, S.N. (1988) Early history of the Earth: evidence from the Eastern Indian shield. In: D. Mukhopadhyay (Eds.), Precambrian of the Eastern Indian Shield. Mem. Geol. Soc. India, no.8, pp.13–37.

  • Saha, D. and Mazumder, R. (2012) An overview of the Palaeoproterozoic geology of Peninsular India and key stratigraphic and tectonic issues. Geol. Soc. London, Spec. Publ., v.365(1), pp.5–29.

    Article  Google Scholar 

  • Sarkar, S.C. and Gupta, A. (2012) Crustal Evolution and Metallogeny in India. Cambridge University Press, Cambridge, 840p.

    Book  Google Scholar 

  • Scandolara, J.E., Ribeiro, P.S.E., Frasca, A.A.S., Fuck, R.A. and Rodrigues, J.B. (2014) Geochemistry and geochronology of mafic rocks from the Vespor suite in the Juruena arc, Roosevelt-Juruena terrain, Brazil: Implications for Proterozoic crustal growth and geodynamic setting of the SW Amazonian craton. Jour. South Amer. Earth Sci., v.53, pp.20–49.

    Article  Google Scholar 

  • Silva Valério, C.da, Silva Souza, V.da and Buenano Macambira, M.J. (2009) The 1.90−1.88 Ga magmatism in the southernmost Guyana Shield, Amazonas, Brazil: Geology, geochemistry, zircon geochronology, and tectonic implications. Jour. South Amer. Earth Sci., v.28(3), pp.304–320.

    Article  Google Scholar 

  • Singh, A.K., Upadhyay, D., Pruseth, K.L., Mezger, K., Nanda, J.K., Maiti, S. and Saha, D. (2021a) Shock Metamorphic Features in the Archaen Simlipal Complex, Singhbhum Craton, Eastern India: Possible Remnant of a Large Impact Structure. Jour. Geol. Soc. India, v.97, pp.35–47.

    Article  Google Scholar 

  • Singh, A.K., Upadhyay, D., Pruseth, K.L., Mezger, K. and Nanda, J.K. (2021b) Age, provenance and tectonic setting of metasedimentary of the Simlipal Complex, Singhbhum Craton, eastern India. Precambrian Res., v.355, 106113. doi:https://doi.org/10.1016/j.precamres.2021.106113.

    Article  Google Scholar 

  • Vernooij, M.G.C. and Langenhorst, F. (2005) Experimental reproduction of tectonic deformation lamellae in quartz and comparison to shock-induced planar deformation features. Meteorit. Planet. Sci., v.40(9–10), pp.1353–1361.

    Article  Google Scholar 

Download references

Acknowledgements

Authors are grateful for the financial support of the UGC-UPE-II program given to the University of Calcutta, Department of Geology. They are grateful to the Office of the Principal CCF (Wildlife) and Chief Wildlife Warden, Odisha for providing necessary permission to execute geological field work in Simlipal Tiger Reserve Project. C. Manikyamba thanks the Director, CSIR-NGRI for his support and encouragement. Incisive comments from the anonymous reviewer to upgrade the quality of the paper are thankfully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jyotisankar Ray.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kar, A., Ray, J., Sinha, S. et al. Geology of the Simlipal Volcano-sedimentary Basin of Singhbhum Revisited: A Simplistic Interpretation. J Geol Soc India 98, 329–334 (2022). https://doi.org/10.1007/s12594-022-1984-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12594-022-1984-3

Navigation