Skip to main content
Log in

Indian Ocean Ridge System and Seafloor Hydrothermal Activity

  • Original Article
  • Published:
Journal of the Geological Society of India

Abstract

This paper presents a short review of some of the notable contributions by scientists from several parts of the world in furthering our understanding of the seafloor hydrothermal activity on the Indian Ocean ridges (IOR). Studies to date on the hydrothermal plumes and vents on the IOR and the marine sediments around the vents highlight the complex nature of hydrothermal activity on the Indian Ocean ridge system which is characterised by varying spreading rates, differences in the host rock system and perceptible variations in the chemical composition of the hydrothermal fluids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agarwal, D.K., Roy, P., Prakash, L.S. and Kurian, P.J. (2020) Hydrothermal signatures in sediments from eastern Southwest Indian Ridge 63°E to 68°E. Mar. Chem., v.218, 103732. doi:https://doi.org/10.1016/j.marchem.2019.103732

    Article  Google Scholar 

  • Bach, W., Banerjee, N.R., Dick, H.J.B. and Baker, E.T. (2002) Discovery of ancient and active hydrothermal systems along the ultra-slow spreading Southwest Indian Ridge 10°–16°E. Geochem., Geophys. Geosystems, v.3, pp.1–14. doi:https://doi.org/10.1029/2001gc000279

    Article  Google Scholar 

  • Baker, E.T., Chen, Y.J. and Morgan, P. J. (1996) The relationship between near-axis hydrothermal cooling and the spreading rate of mid-ocean ridges. Earth Planet. Sci. Lett., v.142, pp.137–145. doi:https://doi.org/10.1016/0012-821X(96)00097-0.

    Article  Google Scholar 

  • Banerjee, R. and Ray, D. (2003) Metallogenesis along the Indian ocean ridge system. Curr. Sci., v.85, pp.321–327.

    Google Scholar 

  • Beaulieu, S. E., Baker, E. T., German, C. R. and Maffei, A. (2013) An authoritative global database for active submarine hydrothermal vent fields. Geochem. Geophys. Geosystems, v.14, pp.4892–4905. doi:https://doi.org/10.1002/2013gc004998

    Article  Google Scholar 

  • Beaulieu, S. E., Baker, E. T. and German, C. R. (2015) Where are the undiscovered hydrothermal vents on oceanic spreading ridges? Deep Sea Res. Part II, Top. Stud. Oceanogr., v.121, pp. 02–212. doi: https://doi.org/10.1016/j.dsr2.2015.05.001

    Article  Google Scholar 

  • Bostrom, K. and Peterson, M.N.A. (1969) The origin of aluminium-poor ferromanganoan sediments in areas of high heat flow on the East Pacific Rise. Mar. Geol., v.7, pp.427–447.

    Article  Google Scholar 

  • Bostrom, K. and Fisher, D. E. (1971) Volcanogenic uranium, vanadium and iron in Indian Ocean sediments. Earth Planet.Sci. Letters, v.11, pp.95–98. doi:https://doi.org/10.1016/0012-821X(71)90148-8

    Article  Google Scholar 

  • Boulart, C., Briais, A., Chavagnac, V. et al. (2017) Contrasted hydrothermal activity along the South-East Indian Ridge (1308E-1408E): From crustal to ultramafic circulation. Geochemistry, Geophys. Geosystems, v.8, pp.2446–2458. doi:https://doi.org/10.1002/2016GC006683.

    Article  Google Scholar 

  • Cannat, M., Sauter, D., Bezos, A. et al. (2008) Spreading rate, spreading obliquity, and melt supply at the ultraslow spreading Southwest Indian Ridge. Geochem., Geophys. Geosystems, v.9, pp.1–26. doi:https://doi.org/10.1029/2007GC001676

    Article  Google Scholar 

  • Cave, R., German, C., Thomson, J. and Nesbitt, R. (2002) Fluxes to sediments underlying the Rainbow hydrothermal plume at 36°14′N on the Mid-Atlantic Ridge. Geochim. Cosmochim. Acta, v.66, pp.1905–1923. doi:https://doi.org/10.1016/S0016-7037(02)00823-2

    Article  Google Scholar 

  • Chen, J., Tao, C., Liang, J., et al. (2018) Newly discovered hydrothermal fields along the ultraslow-spreading Southwest Indian Ridge around 63°E. Acta Oceanol. Sin., v.37, pp.61–67. doi:https://doi.org/10.1007/s13131-018-1333-y

    Article  Google Scholar 

  • Chen, X., Sun, X., Wu, Z., Wang, Y., Lin, X. and Chen, H. (2021) Mineralogy and Geochemistry of Deep-Sea Sediments from the Ultraslow-Spreading Southwest Indian Ridge: Implications for Hydrothermal Input and Igneous Host Rock. Minerals, v.11, v.138. doi:https://doi.org/10.3390/min11020138

  • Cronan, D. S., Damiani V. V., Kinsman D. J. J. and Thiede, J. (1974) Sediments from the Gulf of Aden and the Western Indian Ocean. In: R.L. Fisher et al. (Eds.)., Initial Reports of the DSDP, US Gov. Print. OIT., Washington D.C., v.24, pp.1047–1110.

  • DeMets, C., Gordon, R.G. and Argus, D.F. (2010) Geologically current plate motions. Geophy. J. Int., v.181, pp. 1–80. doi:https://doi.org/10.1111/J.1365-246X.2009.04491.x

    Article  Google Scholar 

  • Dick, H.J.B., Lin, J. and Schouten, H. (2003) An ultra slow spreading class of ocean ridge. Nature, v.426, pp.405–412.

    Article  Google Scholar 

  • Edmonds, H.N., Michael, P.J., Baker, E.T., et al. (2003). Discovery of abundant hydrothermal venting on the ultraslow-spreading Gakkel ridge in the Arctic Ocean. Nature, v.421, pp.252–256. doi:https://doi.org/10.1038/nature01351

    Article  Google Scholar 

  • Elderfield, H. (1995) Seafloor Hydrothermal Systems: Physical, Chemical, Biological, and Geological Interactions. Geophys. Monog., v.91, Amer. Geophys. Union, pp.47–71.

    Google Scholar 

  • Gamo, T., Chiba, H., Yamanaka, T., et al. (2001) Chemical characteristics of newly discovered black smoker fluids and associated hydrothermal plumes at the Rodriguez Triple Junction, Central Indian Ridge. Earth Planet. Sci. Lett., v.193, pp.371–379. doi:https://doi.org/10.1016/S0012-821X(01)00511-8

    Article  Google Scholar 

  • German, C. R. (2003) Hydrothermal activity on the eastern SWIR (50°-70°E): Evidence from core-top geochemistry, 1887 and 1998. Geochemistry, Geophysics, Geosystems, v.4, pp.1–13. doi:https://doi.org/10.1029/2003GC000522.

    Article  Google Scholar 

  • German, C.R., Baker, E.T., Mevel, C. and Tamaki, K. (1998) Hydrothermal activity along the southwest Indian ridge. Nature, v.395, pp.490–493.

    Article  Google Scholar 

  • German, C.R. and Von Damm, K.L. (2006) Hydrothermal Processes. In: H. Elderfield (Ed.), The oceans and Marine Geochemistry, Treatise on Geochemistry, Oxford, Elsevier, v.6, pp.181–222.

  • German C.R. and Seyfried, W.E. (2014) Hydrothermal Processes. In: H.D. Holland and K.K. Turekian (Eds.)., Treatise on Geochemistry, Second Edition, Oxford, Elsevier, v.8, pp.191–233.

  • German, C.R., Resing, J.A., Xu, G., et al. (2020) Hydrothermal Activity and Seismicity at Teahitia Seamount: Reactivation of the Society Islands Hotspot? Frontiers Mar. Sci., v.7(73). doi: https://doi.org/10.3389/fmars.2020.00073

  • Gharib, J.J., Sansone, F.J., Resing, J.A., et al. (2005) Methane dynamics in hydrothermal plumes over a superfast spreading center: East Pacific Rise, 27.5°–32.3°S. Jour. Geophys. Res., v.110, pp.1–16. doi:https://doi.org/10.1029/2004JB003531

    Article  Google Scholar 

  • Halbach, P., Blum, N., Pluger, W. and 92 S. S. Party. (1995) The Sonne field — first massive sulfides in the Indian Ocean. InterRidge News, pp.12–15

  • Hannington, M.D., Jonasson, I.R., Herzig, P.M. and Petersen, S. (1995) Physical and chemical processes of seafloor mineralization at midocean ridges. In: S.E. Humphris et al. (Eds.)., Seafloor hydrothermal systems: Physical, chemical, biological and geological interactions. Geophys. Monog., Amer. Geophys. Union, v.91, pp.115–157.

  • Hannington, M., Galley, A. G., Herzig, P. M. and Petersen, S. (1998) Comparison of the TAG mound and stockwork complex with Cyprus type massive sulphide deposits. In: P. M. Herzig et al. (Eds.)., Proc. ODP, Sci. Results, College Station, TX, v.158, pp.389–415.

  • Hannington, M., Jamieson, J., Monecke, T., Petersen, S. and Beaulieu, S. (2011) The abundance of seafloor massive sulfide deposits. Geology, v.12, pp.1155–1158.

    Article  Google Scholar 

  • Herzig, P.M. and Plueger, W.L. (1988) Exploration for hydrothermal activity near the Rodriguez Triple Junction, Indian Ocean. Canadian Mineral., v.26, pp.721–736.

    Google Scholar 

  • Hoagland, P., Beaulieu, S., Tivey, M. A., Eggert, R. G., German, C., Glowka, L. and Lin, J. (2010) Deep-sea mining of seafloor massive sulphides. Marine Policy, v.34, pp.728–732.

    Article  Google Scholar 

  • Jean-Baptiste, P., Mantisi, F., Pauwells, H., Grimaud, D. and Patriat, P. (1992) Hydrothermal 3He and manganese plumes at 19°292 S on the Central Indian Ridge. Geophy. Res. Lett., v.19, pp.1787–1790. doi:https://doi.org/10.1029/92GL00577

    Article  Google Scholar 

  • Kalangutkar, N.G., Kurian, P.J. and Iyer, S.D. (2021) Characterization of ferromanganese crusts from the Central and South West Indian ridges: Evidence for hydrothermal activity. Marine Georesources and Geotechnology. doi.:https://doi.org/10.1080/1064119X.2021.1886205

  • Kamesh Raju, K. A., Mudholkar, A. V. and Samudrala, K. (2015) Slow Spreading Ridges of the Indian Ocean: An Overview of marine geophysical investigations. Jour. Indian Geophys.Union, v.19, pp.137–159.

    Google Scholar 

  • Karl, D.M., McMurtry, G.M., Malahoff, A. and Garcia, M.O. (1988) Loihi Seamount, Hawaii: a mid-plate volcano with a distinctive hydrothermal system. Nature, v.335, pp.532–535.

    Article  Google Scholar 

  • Kawagucci, S., Okamura, K., Kiyota, K., et al. (2008) Methane, manganese, and helium-3 in newly discovered hydrothermal plumes over the Central Indian Ridge, 18°-20°S. Geochemistry, Geophys. Geosystems, v.9, pp.1–14. doi:https://doi.org/10.1029/2008GC002082

    Article  Google Scholar 

  • Kong, L., Ryan, W. B. F., Mayer, L., et al. (1985) Bare-Rock Drill Sites, ODP Legs 106 and 109: Evidence for Hydrothermal Activity at 23° N in the Mid-Atlantic Ridge, EOS, v.66, pp.1106.

    Google Scholar 

  • Krasnov, S.G., Cherkashev, G.A., Stepanova, T.V., et al. (1995) Detailed geological studies of hydrothermal fields in the North Atlantic. Geol. Soc. London, Spec. Publ., v.87, pp.43–64. doi:https://doi.org/10.1144/GSL.SP.1995.087.01.05

    Article  Google Scholar 

  • Kuhn, T., Bau, M., Blum, N. and Halbach, P. (1998) Origin of negative Ce anomalies in mixed hydrothermal-hydrogenetic Fe-Mn crusts from the Central Indian Ridge. Earth. Planet. Sci. Lett., v.163, pp.207–220. doi:https://doi.org/10.1016/S0012-821X(98)00188-5.

    Article  Google Scholar 

  • Kuhn, T., Burger, H., Castradori, D. and Halbach, P. (2000) Volcanic and hydrothermal history of ridge segments near the Rodrigues Triple Junction (Central Indian Ocean) deduced from sediment geochemistry. Mar. Geol., v.169, pp.391–409.

    Article  Google Scholar 

  • Li, M., Toner, B.M., Baker, B.J., Breier, J.A., Sheik, C.S. and Dick, G.J. (2014). Microbial iron uptake as a mechanism for dispersing iron from deep-sea hydrothermal vents. Nature Commun., v.5, pp.3192. doi:https://doi.org/10.1038/ncomms4192.

    Article  Google Scholar 

  • Liao, S., Tao, C., Li, H., et al. (2018) Surface sediment geochemistry and hydrothermal activity indicators in the Dragon Horn area on the Southwest Indian Ridge. Mar. Geol., v.398, pp.22–34. doi:https://doi.org/10.1016/j.margeo.2017.12.005

    Article  Google Scholar 

  • Mascarenhas-Pereira, M.B.L. and Nath, B.N. (2010) Selective leaching studies of sediments from a seamount flank in the Central Indian Basin: Resolving hydrothermal, volcanogenic and terrigenous sources using major, trace and rare-earth elements. Mar. Chem., v.121, pp.49–66. doi:https://doi.org/10.1016/j.marchem.2010.03.004

    Article  Google Scholar 

  • McArthur, J. M. and Elderfield, H. (1977) Metal accumulation rates in sediments from Mid-Indian Ocean Ridge and Marie Celeste Fracture Zone. Nature, v.266, pp.437–439

    Article  Google Scholar 

  • Murton, B.J., Baker, E.T., Sands, C.M. and German, C.R. (2006) Detection of an unusually large hydrothermal event plume above the slow-spreading Carlsberg Ridge: NW Indian Ocean. Geophys. Res. Lett., v.33, pp.1–5. doi:https://doi.org/10.1029/2006GL026048

    Article  Google Scholar 

  • Nakamura, K., Watanabe, H., Miyazaki, J., et al. (2012) Discovery of new hydrothermal activity and chemosynthetic fauna on the Central Indian ridge at 18°-20°S. PLoS One, v.7, pp.1–11. doi:https://doi.org/10.1371/journal.pone.0032965

    Article  Google Scholar 

  • Nath, B.N., Plüger, W.L. and Roelandts, I. (1997) Geochemical constraints on the hydrothermal origin of ferromanganese encrustations from the Rodriguez Triple Junction, Indian Ocean. Geol. Soc. Spec. Publ., v.119, pp.192–221.

    Google Scholar 

  • Patriat, P. and Segoufin, J. (1988) Reconstruction of the Central Indian Ocean. Tectonophysics, v.155, pp.211–234.

    Article  Google Scholar 

  • Petersen, S., Krätschell, A., Augustin, N., Jamieson, J., Hein, J. R. and Hannington, M. D. (2016) News from the seabed — Geological characteristics and resource potential of deep-sea mineral resources. Marine Policy, v.70, pp.175–187.

    Article  Google Scholar 

  • Pluger, W. L., Herzig, P.M., Becker, K.P., et al. (1990) Discovery of hydrothermal fields at the central Indian ridge. Marine Mining, v.9, pp.73–86

    Google Scholar 

  • Rao, P.S., Kamesh Raju, K.A., Ramprasad, T., Nath, B.N., Rao, B.R., Rao, Ch.M. and Nair, R.R. (1996) Evidence for hydrothermal activity in the Andaman Back arc Basin. Curr. Sci., v.70, pp.379–385.

    Google Scholar 

  • Ray, D., Kamesh Raju, K.A., Baker, E.T., et al. (2012) Hydrothermal plumes over the Carlsberg Ridge, Indian Ocean. Geochemistry, Geophys. Geosystems, v.13. doi:https://doi.org/10.1029/2011GC003888

  • Ray, D., Kamesh Raju, K.A., Rao, A.S., et al. (2020) Elevated turbidity and dissolved manganese in deep water column near 10°47′S Central Indian Ridge: studies on hydrothermal activities. Geo-Marine Lett., v.40, pp.619–628.

    Article  Google Scholar 

  • Rona, P.A. (1988) Hydrothermal mineralization at oceanic ridges. Canadian Mineral., v.26, pp.431–465.

    Google Scholar 

  • Royer, J.-Y., Patriat, P., Bergh, H.W. and Scotese, C.R. (1988) Evolution of the Southwest Indian Ridge from the late Cretaceous to the middle Eocene. Mesozoic and Cenozoic plate reconstructions. Tectonophysics, v.155, pp.235–260.

    Article  Google Scholar 

  • Royer, J.-Y. and Sandwell, D. T. (1989) Evolution of the eastern Indian Ocean since the Late Cretaceous: Constraints from Geosat altimetry. Jour. Geophys. Res., v.94, pp.13,755–13,782. doi:https://doi.org/10.1029/JB094iB10p13755

    Article  Google Scholar 

  • Scheirer, D.S., Baker, E.T. and Johnson, K.T.M. (1998) Detection of hydrothermal plumes along the Southeast Indian Ridge near the Amsterdam-St. Paul Plateau. Geophys. Res. Lett., v.25, pp.97–100. doi:https://doi.org/10.1029/97GL03443

    Article  Google Scholar 

  • Schlitzer, R. (2016) Quantifying He fluxes from the mantle using multi-tracer data assimilation. Philos. Trans., A 374. doi:https://doi.org/10.1098/rsta.2015.0288

  • Srinivasan, A., Top, Z., Schlosser, P., et al. (2004) Mantle 3He distribution and deep circulation in the Indian Ocean. Jour. Geophys. Res. Ocean., v.109, pp.1–17. doi:https://doi.org/10.1029/2003JC002028

    Google Scholar 

  • Suryprakash, L., Ray, D., Nath, B.N., et al. (2020) Anomalous phase association of REE in ferromanganese crusts from Indian mid-oceanic ridges: Evidence for large scale dispersion of hydrothermal iron. Chemical Geol., v. 549, 119679. doi:https://doi.org/10.1016/j.chemgeo.2020.119679.

    Article  Google Scholar 

  • Tao, C., Lin, J., Guo, S., et al. (2012) First active hydrothermal vents on an ultraslow-spreading center: Southwest Indian Ridge. Geology, v.40, pp.47–50. doi:https://doi.org/10.1130/G32389.1

    Article  Google Scholar 

  • Tao, C., Wu, G., Deng, X., Qiuz, H., Han, C. and Long, Y. (2013) New discovery of seafloor hydrothermal activity on the Indian Ocean Carlsberg Ridge and Southern North Atlantic Ridge-progress during the 26th Chinese COMRA cruise. Acta Oceanol. Sin., v.32, pp.85–88. doi:https://doi.org/10.1007/s13131-013-0345-x

    Article  Google Scholar 

  • Tao, C., Li, H., Jin, X., et al. (2014) Seafloor hydrothermal activity and polymetallic sulfide exploration on the southwest Indian ridge. Chinese Sci. Bull., v.59, pp.2266–2276.

    Article  Google Scholar 

  • Tao, C., Chen, S., Baker, E.T., et al. (2017) Hydrothermal plume mapping as a prospecting tool for seafloor sulfide deposits: a case study at the Zouyu-1 and Zouyu-2 hydrothermal fields in the southern Mid-Atlantic Ridge. Mar. Geophys. Res., v.38, pp.3–16. doi:https://doi.org/10.1007/s11001-016-9275-2

    Article  Google Scholar 

  • Von Damm, K.L. (1995). Controls on the chemistry of temporal variability of seafloor hydrothermal fluids. In: S.E. Humphris, et al. (Eds.), Seafloor Hydrothermal Systems: Physical, Chemical, Biological and Geological Interactions Systems. Amer. Geophys. Union, Washington. D.C., pp.222–247.

    Google Scholar 

  • Wang, Y., Han, X., Petersen, S., et al. (2017) Mineralogy and trace element geochemistry of sulfide minerals from the Wocan Hydrothermal Field on the slow-spreading Carlsberg Ridge, Indian Ocean. Ore Geol. Rev., v.84, pp.1–19. doi:https://doi.org/10.1016/j.oregeorev.2016.12.020

    Article  Google Scholar 

  • Yu, Z., Li, H., Li, M. and Zhai, S. (2016) Hydrothermal signature in the axialsediments from the Carlsberg Ridge in the northwest Indian Ocean. Jour. Mar. Syst., doi:https://doi.org/10.1016/j.jmarsys.2016.11.013

  • Zierenberg, R.A., Fouquet, Y., Miller, D.J., et al. (1998) The deep structure of a sea-floor hydrothermal deposit. Nature, v.392, pp.485–488.

    Article  Google Scholar 

Download references

Acknowledgements

We would like to express our deep gratitude to Prof. Harsh Gupta for encouraging us to take up this work; but for his invaluable guidance, this paper would not have become a reality. Dr. M. Ravichandran, former Director, NCPOR and currently, the Secretary, Ministry of Earth Sciences, deserves a special mention for extending all help in our efforts to finalise this paper. The authors would like to dedicate this paper to the memory of our dear friend Dr. Milind Wakdikar, who spearheaded the Indian Hydrothermal Programme at the Ministry of Earth Sciences, from inception till his untimely demise on 19 May 2021.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Rajan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurian, P.J., Rajan, S., Agarwal, D.K. et al. Indian Ocean Ridge System and Seafloor Hydrothermal Activity. J Geol Soc India 98, 155–164 (2022). https://doi.org/10.1007/s12594-022-1951-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12594-022-1951-z

Navigation