Skip to main content
Log in

Advances in Geo-Time Series Modelling

  • Published:
Journal of the Geological Society of India

Abstract

Recent advances in geo-time series modelling are briefly presented. These progressive developments and imminent applications in the data-driven research have come across three main categories of investigation efforts (i) Classical to recent advances in spectral analyses and their applications on some very significant geophysical/geological time series. Specially, applications of modern multi-taper methods of spectral analysis (MTM) and singular spectral analysis (SSA) techniques based filtering are discussed. Applications on 3D seismic reflection data de-noising using multi-channel SSA along with significant results are demonstrated. (ii) Methods of nonlinear time series analyses and physical concept of fractal and chaos are enumerated and relevance of chaos in complex geophysical and geological time series modelling are discussed (iii) The upcoming field of research in Machine learning (ML) based artificial neural network (ANN) and Deep Learning (DL) along with pertinent applications on variety of geophysical data, such well-log, ground water, gravity, seismic/seismological data etc., are presented and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alexander, S. Gleyzer, S. McDonough, E. Toomey, M. W. and Usai, E. (2020) Deep Learning the Morphology of Dark Matter Substructure. Astrophysical Jour., v.893(1), pp.1–10.

    Google Scholar 

  • Allen, J. (1977) Short term spectral analysis, synthesis, and modification by discrete Fourier transform. IEEE Trans. Acoustics, Speech, and Signal Processing, v.25(3), pp.235–238.

    Article  Google Scholar 

  • Anantrasirichai, N. Biggs, J. Albino, F. and Bull, D. (2019) The application of convolutional neural networks to detect slow, sustained deformation in InSAR time series. Geophys. Res. Lett., v.46(21), pp.11850–11858.

    Article  Google Scholar 

  • Ayzel, G. Heistermann, M. Sorokin, A. Nikitin, O. and Lukyanova, O. (2019) All convolutional neural networks for radar-based precipitation nowcasting. Procedia Computer Sci., v.150, pp.186–192.

    Article  Google Scholar 

  • Bansal, A.R., Gabriel, G., Dimri, V.P. and Krawczyk, C.M. (2011) Estimation of depth to the bottom of magnetic sources by a modified centroid method for fractal distribution of sources: An application to aeromagnetic data in Germany. Geophysics, v.76(3), pp.L11–L22.

    Article  Google Scholar 

  • Bergen, K. J., Chen, T. and Li, Z. (2019) Preface to the focus section on machine learning in seismology. Seismol. Res. Lett., v.90(2A), pp.477–480

    Article  Google Scholar 

  • Birchfield, G. E. and Ghil, M. (1993) Climate evolution in the Pliocene and Pleistocene from marine sediment records and simulations: Internal variability versus orbital forcing. Jour. Geophys. Res.: Atmospheres, v.98(D6), pp.10385–10399.

    Article  Google Scholar 

  • Chamoli A. (2011) Wavelet Analysis of Geophysical Time Series, In: Dimri, V.P. and Chamyal, S. (Eds.), Advances in Earth Sciences. The Society of Earth Scientists, S.S. Serial Publ. House, Delhi, v.2, pp.33–55.

  • Chamoli, A. and Yadav R.B.S. (2015) Multifractality in Seismic Sequences of NW Himalaya. Natural Hazards, v.77, pp.S19–S32.

    Article  Google Scholar 

  • Chattopadhyay, A. Hassanzadeh, P. and Pasha, S. (2020) Predicting clustered weather patterns: A test case for applications of convolutional neural networks to spatio-temporal climate data. Scientific Reports, v.10(1), pp.1–13.

    Article  Google Scholar 

  • Chen, Y. Zhang, G. Bai, M. Zu, S. Guan, Z. and Zhang, M. (2019) Automatic waveform classification and arrival picking based on convolutional neural network. Earth and Space Science, v.6(7), pp.1244–1261.

    Article  Google Scholar 

  • Claerbout, J.F. (1976) Fundamentals of geophysical data processing. Blackwell Scientific Publications.

  • Colebrook, J. M. (1978) Continuous plankton records-zooplankton and environment, northeast Atlantic and North-Sea, 1948–1975. Oceanologica Acta, v.1(1), pp.9–23.

    Google Scholar 

  • Cook, K. L. Andermann, C. Gimbert, F. Adhikari, B. R. and Hovius, N. (2018) Glacial lake outburst floods as drivers of fluvial erosion in the Himalaya. Science, v.362(6410), pp.53–57.

    Article  Google Scholar 

  • Curilem, M, de Mello, R. F, Huenupan, F, San Martin, C, Franco, L, Hernández, E, and Rios, R. A. (2018) Discriminating seismic events of the Llaima volcano (Chile) based on spectrogram cross-correlations. Jour. Volcanol. Geotherm. Res., v.367, pp.63–78.

    Article  Google Scholar 

  • Daubechies, I. (1990) The wavelet transform, time-frequency localization and signal analysis. IEEE Trans. Information Theory, v.36(5), pp.961–1005.

    Article  Google Scholar 

  • De, S.S. and Debnath, A. (2009) Artificial neural network based prediction of maximum and minimum temperature in the summer monsoon months over India. Appl. Phys. Res., v.1(2), pp.37.

    Article  Google Scholar 

  • Dimri, V.P. (2005). Fractals in geophysics and seismology: an introduction. In Fractal behaviour of the earth system, pp.1–22. Springer, Berlin, Heidelberg.

    Chapter  Google Scholar 

  • Dimri, V. P. Srivastava, R. P. and Vedanti, N. (2012) Fractal models in exploration geophysics: applications to hydrocarbon reservoirs, v.41. Elsevier.

  • Dwivedi, D. and Chamoli A. (2021) Source edge detection of potential field data using wavelet decomposition. Pure Appl. Geophys., v.178, pp.919–938.

    Article  Google Scholar 

  • Eddy, J. A. (1976) The maunder minimum. Science, v.192(4245), pp.1189–1202.

    Article  Google Scholar 

  • El Qady, G. and Ushijima, K. (2001) Inversion of DC resistivity data using neural networks. Geophys. Prospect., v.49(4), pp.417–430.

    Article  Google Scholar 

  • Fahlman S.E. (1988) Faster-Learning Variations on Back-Propagation: An Empirical Study. Proc. of 1988 Connectionist Models Summer School.

  • Fraedrich, K. (1986) Estimating the dimensions of weather and climate attractors. Jour. Atmos. Sci., v.43(5), pp.419–432.

    Article  Google Scholar 

  • Fukushima, K. Miyake, S. and Ito, T. (1983) Neocognitron: A neural network model for a mechanism of visual pattern recognition. IEEE transactions on systems, man, and cybernetics, v.5, pp.826–834.

    Article  Google Scholar 

  • Ghil, M. and Vautard, R. (1991) Interdecadal oscillations and the warming trend in global temperature time series. Nature, v.350(6316), pp.324–327.

    Article  Google Scholar 

  • Ghil, M, and Taricco, C. (1997) Advanced spectral analysis methods. Past and present variability of the solar-terrestrial system: measurement, data analysis and theoretical models. IOS Press, pp:137–159.

  • Golub G.H. and Van Loan C.F. (1996) Matrix Computations, 3rd ed. (J. Hopkins Univ. Press, Baltimore, MD).

    Google Scholar 

  • Goutorbe, B. Lucazeau, F. and Bonneville, A. (2006) Using neural networks to predict thermal conductivity from geophysical well logs. Geophys. Jour. Internat., v.166(1), pp.115–125.

    Article  Google Scholar 

  • Grassberger, P. and Procaccia, I. (1983) Characterization of strange attractors. Physical Rev. Lett., v.50(5), p.346.

    Article  Google Scholar 

  • Ham, Y.G., Kim, J.H. and Luo, J.J. (2019) Deep learning for multi-year ENSO forecasts. Nature, v.573(7775), pp.568–572.

    Article  Google Scholar 

  • Hornby, P, Boschetti, F, and Horowitz, F. G. (1999) Analysis of potential field data in the wavelet domain. Geophys. Jour. Internat., v.137(1), pp.175–196.

    Article  Google Scholar 

  • Huang, J.P. Wang, X.A. Zhao, Y. Xin, C. and Xiang, H. (2018) Large earthquake magnitude prediction in Taiwan based on deep learning neural network. Neural Network World, v.28(2), pp.149–160.

    Article  Google Scholar 

  • Kuo, C. Lindberg, C. and Thomson, D. J. (1990) Coherence established between atmospheric carbon dioxide and global temperature. Nature, v.343(6260), pp.709–714.

    Article  Google Scholar 

  • Kumar, P. and Foufoula Georgiou, E. (1997) Wavelet analysis for geophysical applications. Rev. Geophys., v.35(4), pp.385–412.

    Article  Google Scholar 

  • Lakshmi, S.S. and Tiwari, R.K. (2009) Model dissection from earthquake time series: A comparative analysis using modern non-linear forecasting and artificial neural network approaches. Computers & Geosciences, v.35(2), pp.191–204.

    Article  Google Scholar 

  • Lakshmi, S.S. and Tiwari, R.K. (2009) Model dissection from earthquake time series: A comparative analysis using modern non-linear forecasting and artificial neural network approaches. Computers and Geosciences, v.35(2), pp.191–204.

    Article  Google Scholar 

  • LeCun, Y. Bengio, Y. and Hinton, G. (2015) Deep learning. Nature, v.521(7553), pp.436–444.

    Article  Google Scholar 

  • Lu, W. and Li, F. (2013) Seismic spectral decomposition using deconvolutive short-time Fourier transform spectrogram. Geophysics, v.78(2), pp.V43–V51.

    Article  Google Scholar 

  • Maiti, S, Krishna Tiwari, R. and Kumpel, H. J. (2007) Neural network modelling and classification of lithofacies using well log data: a case study from KTB borehole site. Geophys. Jour. Internat., v.169(2), pp.733–746.

    Article  Google Scholar 

  • Maiti, S. and Tiwari, R. K. (2009) A hybrid Monte Carlo method based artificial neural networks approach for rock boundaries identification: A case study from the KTB bore hole. Pure Appl. Geophys., v.166(12), pp.2059–2090.

    Article  Google Scholar 

  • Maiti, S. and Tiwari, R. K. (2010a) Automatic discriminations among geophysical signals via the Bayesian neural networks approach. Geophysics, v.75(1), pp.E67–E78.

    Article  Google Scholar 

  • Maiti, S. and Tiwari, R. K. (2010b) Neural network modeling and an uncertainty analysis in Bayesian framework: a case study from the KTB borehole site. Jour. Geophys. Res.: Solid Earth, v.115, p.B10208.

    Article  Google Scholar 

  • Maiti, S. and Tiwari, R. K. (2014) A comparative study of artificial neural networks, Bayesian neural networks and adaptive neuro-fuzzy inference system in groundwater level prediction. Environ. Earth Sci., v.71(7), pp.3147–3160.

    Article  Google Scholar 

  • Maiti, S. Erram, V. C. Gupta, G. and Tiwari, R. K. (2012) ANN based inversion of DC resistivity data for groundwater exploration in hard rock terrain of western Maharashtra (India). Jour. Hydrol., v.464, pp.294–308.

    Article  Google Scholar 

  • Maiti, S. Gupta, G. Erram, V. C. and Tiwari, R. K. (2011) Inversion of Schlumberger resistivity sounding data from the critically dynamic Koyna region using the Hybrid Monte Carlo-based neural network approach. Nonlinear Processes in Geophysics, v.18(2), pp.179–192.

    Article  Google Scholar 

  • Maiti, S. Kumar, C. R. Sarkar, P. Tiwari, R. K. and Srinu, U. (2019) Interface depth modelling of gravity data and altitude variations: a Bayesian neural network approach. Neural Computing and Applications, pp.1–20.

  • Mandelbrot, B. (1967) How long is the coast of Britain? Statistical self-similarity and fractional dimension. Science, v.156(3775), pp.636–638.

    Article  Google Scholar 

  • Mann, M. E. and Lees, J. M. (1996) Robust estimation of background noise and signal detection in climatic time series. Climatic Change, v.33(3), pp.409–445.

    Article  Google Scholar 

  • Mann, M. E. and Park, J. (1994) Global scale modes of surface temperature variability on interannual to century timescales. Jour. Geophys. Res.: Atmospheres, v.99(D12), pp.25819–25833.

    Article  Google Scholar 

  • Mann, M. E. Park, J. and Bradley, R. S. (1995) Global interdecadal and century-scale climate oscillations during the past five centuries. Nature, v.378(6554), pp.266–270.

    Article  Google Scholar 

  • Moberg, A. (1995). Multi-taper spectral analysis of the Stockholm air temperature record: A significant 22.8-year cyclic pulse observed. Jour. Coastal Res., v.17, pp.39–44.

    Google Scholar 

  • Marangio, P, Christodoulou, V, Filgueira, R, Rogers, H. F. and Beggan, C. D. (2020) Automatic detection of Ionospheric Alfvén Resonances in magnetic spectrograms using U-net. Computers & Geosciences, v.145, p.104598.

    Article  Google Scholar 

  • Negi, J. G. and Tiwari, R. K. (1983) Matching long term periodicities of geomagnetic reversals and galactic motions of the solar system. Geophysical Research Letters, v.10(8), pp.713–716.

    Article  Google Scholar 

  • Negi, J. G. and Tiwari, R. K. (1984) Periodicities of palaeomagnetic and palaeoclimatic variations: a Walsh spectral approach. Earth and Planet. Sci. Lett, v.70, pp.137–147.

    Article  Google Scholar 

  • Obornev, E.A. Obornev, I.E. Rodionov, E.A. and Shimelevich, M.I. (2020) Application of Neural Networks in Nonlinear Inverse Problems of Geophysics. Computational Mathematics and Mathematical Physics, v.60(6), pp.1025–1036.

    Article  Google Scholar 

  • Panakkat, A. and Adeli, H. (2007) Neural network models for earthquake magnitude prediction using multiple seismicity indicators. Internat. Jour. Neural Systems, v.17(01), pp.13–33.

    Article  Google Scholar 

  • Park, J. Lindberg, C. R. and Vernon III, F. L. (1987) Multitaper spectral analysis of high frequency seismograms. Jour. Geophys. Res.: Solid Earth, v.92(B12), pp.12675–12684.

    Article  Google Scholar 

  • Perol, T. Gharbi, M. and Denolle, M. (2018) Convolutional neural network for earthquake detection and location. Science Advances, v.4(2), p.e1700578.

    Article  Google Scholar 

  • Peters, B. Haber, E. and Granek, J. (2019) Neural networks for geophysicists and their application to seismic data interpretation. The Leading Edge, v.38(7), pp.534–540.

    Article  Google Scholar 

  • Phansalkar, V.V. and Sastry, P.S. (1994) Analysis of the back-propagation algorithm with momentum. IEEE Trans. Neural Networks, v.5(3), pp.505–506.

    Article  Google Scholar 

  • Phansalkar, V.V. and Sastry, P.S. (1994) Analysis of the back-propagation algorithm with momentum. IEEE Trans. on Neural Networks, v.5(3), pp.505–506.

    Article  Google Scholar 

  • Portnoff, M. (1980) Time-frequency representation of digital signals and systems based on short-time Fourier analysis. IEEE Trans. Acoustics, Speech, and Signal Processing, v.28(1), pp.55–69.

    Article  Google Scholar 

  • Preisendorfer, R.W. and Mobley, C.D. (1988) Principal component analysis in meteorology and oceanography. Developments in Atmospheric Science, v.17, pp.1–403.

    Google Scholar 

  • Puzyrev, V. (2019) Deep learning electromagnetic inversion with convolutional neural networks. Geophys. Jour. Internat., v.218(2), pp.817–832.

    Article  Google Scholar 

  • Rekapalli, R. and R.K. Tiwari. (2016) Frequency filtering using Singular Spectrum Analysis involving Eigen weighted spectrogram. Jour. Appl. Geophys., v.132, pp.33–37

    Article  Google Scholar 

  • Rekapalli, R. and Tiwari, R. K. (2015). A short note on the application of Singular Spectrum Analysis for Geophysical Data processing. Jour. Indian Geophys. Union, v.19(1), pp.77–85.

    Google Scholar 

  • Rekapalli, R. R.K. Tiwari, Mrinal K. Sen, and Nimisha Vedanti (2017) 3D seismic data de-noising and reconstruction using Multichannel Time Slice Singular Spectrum Analysis. Jour. Appl. Geophys., v.140, pp.145–153.

    Article  Google Scholar 

  • Rekapalli, R. Tiwari, R.K., Dhanam, K. and Seshunarayana, T. (2014) T-x frequency filtering of high-resolution seismic reflection data using singular spectral analysis. Jour. Appl. Geophys., v.105, pp.180–184. doi:https://doi.org/10.1016/j.jappgeo.2014.03.017.

    Article  Google Scholar 

  • Rekapalli, R. Tiwari, R.K. and Sen, M.K. (2016) Fault identification by diffraction separation from seismic reflection data using time slice SSA based algorithm. In: SEG Technical Program Expanded Abstracts, pp.3920–3924.

  • Riedmiller, M. and Braun, H. (1993) A direct adaptive method for faster backpropagation learning: The RPROP algorithm. In: IEEE International Conference on Neural Networks, pp.586–591.

  • Roy, P. N. S. and Mondal, S. K. (2012) Multifractal analysis of earthquakes in Kumaun Himalaya and its surrounding region. Jour. Earth System Sci., v.121(4), pp.1033–1047.

    Article  Google Scholar 

  • Roy, P.N.S. and Padhi, A. (2007) Multifractal analysis of earthquakes in the southeastern Iran-Bam region. Pure Appl. Geophys., v.164(11), pp.2271–2290.

    Article  Google Scholar 

  • Roy, P. N. S. Mondal, S. K. and Joshi, M. (2012) Seismic hazards assessment of Kumaun Himalaya and adjacent region. Natural Hazards, v.64(1), pp.283–297.

    Article  Google Scholar 

  • Rumelhart, D. E. Hinton, G. E. and Williams, R. J. (1986) Learning representations by back-propagating errors. Nature, v.323(6088), pp.533–536.

    Article  Google Scholar 

  • Sajid, M. and Ghosh, D. (2014) Logarithm of short time Fourier transform for extending the seismic bandwidth. Geophys. Prospect., v.62(5), pp.1100–1110.

    Article  Google Scholar 

  • Singh, U. K. Tiwari, R. K. and Singh, S. B. (2005) One-dimensional inversion of geo-electrical resistivity sounding data using artificial neural networks—a case study. Computers and Geosciences, v.31(1), pp.99–108.

    Article  Google Scholar 

  • Singh, U. K. Tiwari, R. K. and Singh, S. B. (2010). Inversion of 2-D DC resistivity data using rapid optimization and minimal complexity neural network. Nonlinear Processes in Geophysics, v.17(1), pp.65–76.

    Article  Google Scholar 

  • Telesca L, Chamoli A, Lovallo M. and Stabile, T.A. (2015) Investigating the tsunamigenic potential of earthquakes from the analysis of the informational and multifractal properties of seismograms. Pure Appl. Geophys., v.172, pp.1933–1943.

    Article  Google Scholar 

  • Thomson, D. J. (1982) Spectrum estimation and harmonic analysis. Proc. IEEE, v.70(9), pp.1055–1096.

    Article  Google Scholar 

  • Thomson, D. J. (1990a) Time series analysis of Holocene climate data. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, v.330(1615), pp.601–616.

    Google Scholar 

  • Thomson, D. J. (1990b) Quadratic-inverse spectrum estimates: applications to palaeo climatology. Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences, v.332(1627), pp.539–597.

    Article  Google Scholar 

  • Tiwari, R. K. (1987a) Higher-order eccentricity cycles of the middle and late Miocene climatic variations. Nature, v.327(6119), pp.219–221.

    Article  Google Scholar 

  • Tiwari, R. K. (1987b) A Walsh spectral comparison of oxygen (δ18O) and carbon isotope (δ13C) variations of the Pleistocene bore hole (Eureka 67–135) from the Gulf of Mexico and their orbital significance. Marine Geol., v.78(1–2), pp.167–174.

    Article  Google Scholar 

  • Tiwari, R. K. (2000) Detecting chaos from geophysical time series. Application of fractals in earth sciences, pp.195–213.

  • Tiwari, R.K. and Maiti, S. (2011) Bayesian neural network modeling of tree-ring temperature variability record from the Western Himalayas. Nonlinear Processes in Geophys., v.18(4), pp.515–528.

    Article  Google Scholar 

  • Tiwari, R. K. and Rajesh, R. (2014a) Factorized Hankel optimal singular spectral approach for erratic and noisy seismic signal denoising. Jour. Appl. Geophys., v.111, pp.95–101.

    Article  Google Scholar 

  • Tiwari, R. K. and Rajesh, R. (2014b) Imprint of long term solar signal in groundwater recharge fluctuation rates from Northwest China. Geophys. Res. Lett., v.41(9), pp.3103–3109.

    Article  Google Scholar 

  • Tiwari, R. K. and Rao, K. N. N. (1999) Periodicity in marine phosphorus burial rate. Nature, v.400(6739), pp.31–32.

    Article  Google Scholar 

  • Tiwari, R.K. and Rao, K.N.N. (1999) Phase space structure, attractor dimension, Lyapunov exponent and nonlinear prediction from Earth’s atmospheric angular momentum time series. Pure Appl. Geophys., v.156(4), pp.719–736.

    Article  Google Scholar 

  • Tiwari, R.K. and Rekapalli, R. (2020) Modern singular spectral-based denoising and filtering techniques for 2D and 3D reflection seismic data. Springer Nature.

  • Tiwari, R.K., Lakshmi, S.S. and Rao, K.N.N. (2004) Characterization of earthquake dynamics in northeastern India regions: a modern nonlinear forecasting approach. Pure Appl. Geophys., v.161(4), pp.865–880.

    Article  Google Scholar 

  • Tiwari, R.K., Negi, J.G. and Rao, K.N.N. (1992) Attractor dimensions in non linear fluctuations of length of the day (LOD) variations. Geophys. Res. Lett., v.19(9), pp.909–912.

    Article  Google Scholar 

  • Tiwari, R.K., Negi, J.G. and Rao, K.N.N. (1994) Strange attractor in nonlinear fluctuations of length of the day (LOD) time series. Geophysical Monograph, Amer. Geophys. Union, v.83, pp.61–61.

    Google Scholar 

  • Tiwari, R. K. Rajesh, R. Dhanam, K. and Seshunarayana, T. (2018). 2D Seismic reflection data filtering using Time Slice Singular Spectrum Analysis for noise suppression: A case study from Singareni coalfield, India. Jour. Indian Geophys. Union, v.22(5), pp.459–467.

    Google Scholar 

  • Tiwari, R.K. Srilakshmi, S. and Rao, K.N.N. (2003) Nature of earthquake dynamics in the central Himalayan region: a nonlinear forecasting analysis. Journal of Geodynamics, v.35(3), pp.273–287.

    Article  Google Scholar 

  • Tollenaere, T. (1990) SuperSAB: Fast adaptive back propagation with good scaling properties. Neural networks, v.3(5), pp.561–573.

    Article  Google Scholar 

  • Torrence, C. and Compo, G. P. (1998) A practical guide to wavelet analysis. Bull. Amer. Meteorolog. Society, v.79(1), pp.61–78.

    Article  Google Scholar 

  • Trickett, S.R. (2003) F-xy eigenimage noise suppression. Geophysics, v.68, pp.751–759. doi:https://doi.org/10.1190/1.1567245.

    Article  Google Scholar 

  • Vautard, R. and Ghil, M. (1989) Singular spectrum analysis in nonlinear dynamics, with applications to paleoclimatic time series. Physica D: Nonlinear Phenomena, v.35(3), pp.395–424.

    Article  Google Scholar 

  • Wu, X. Geng, Z. Shi, Y. Pham, N. Fomel, S. and Caumon, G. (2020) Building realistic structure models to train convolutional neural networks for seismic structural interpretation. Geophysics, v.85(4), pp.WA27–WA39.

    Article  Google Scholar 

  • Yilmaz, O. (2001) Seismic data analysis: processing, inversion, and interpretation of seismic data. Society of Exploration Geophysicists. ISBN 978-1-56080-099-6.

  • Yiou, P. Genthon, C. Ghil, M. Jouzel, J. Le Treut, H. Barnola, J. M. … and Korotkevitch, Y. N. (1991) High frequency paleovariability in climate and CO2 levels from Vostok ice core records. Jour. Geophys. Res.: Solid Earth, v.96(B12), pp.20365–20378.

    Article  Google Scholar 

  • Yiou, P. Jouzel, J. Johnsen, S. and Rögnvaldsson, Ö. E. (1995) Rapid oscillations in Vostok and GRIP ice cores. Geophys. Res. Lett., v.22(16), pp.2179–2182.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Director, CSIR-NGRI for his kind permission to submit the manuscript. Second author is thankful to CSIR for SRA fellowship. We are also thankful to Editor and Associate editors for their invitation to submit this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. K. Tiwari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tiwari, R.K., Rekapalli, R. Advances in Geo-Time Series Modelling. J Geol Soc India 97, 1313–1322 (2021). https://doi.org/10.1007/s12594-021-1862-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12594-021-1862-4

Navigation