Skip to main content
Log in

Review of Scaling Approach to Estimate Depths from Gravity and Magnetic Data

  • Published:
Journal of the Geological Society of India

Abstract

The gravity and magnetic methods are the cheapest and oldest geophysical explorations methods used as a reconnaissance survey for hydrocarbon and mineral exploration. A reliable estimation of the fractures, depth, density/susceptibility distribution within the crust is possible with some assumptions, and one such assumption is white noise distribution. The distribution of sources from the borehole follows a scaling noise distribution. The introduction of scaling noise resulted in a better estimate of the depth from gravity and magnetic data. The method is applied to the field data from India, Iran, Germany, Australia, the USA, and many other parts of the globe, to estimate the depth values. Large window sizes of 5 to 10 times the expected depths are required for its estimation. The scaling exponents are not constant but vary with the lithology and crustal heterogeneities of the region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abraham, E.M., Obande, E.G., Chukwu, M., Chukwu, C.G. and Onwe, M.R. (2015) Estimating depth to the bottom of magnetic sources at Wikki Warm Spring region, northeastern Nigeria, using fractal distribution of sources approach, Turkish Jour. Earth Sci., v.24, pp.494–512.

    Google Scholar 

  • Abdullahi, M. and Kumar, R. (2020) Curie depth estimated from high resolution aeromagnetic data of parts of lower and middle Benue trough (Nigeria), Acta Geodaetica et Geophysica, v.55, pp.627–643

    Article  Google Scholar 

  • Bansal, A.R. and Dimri, V.P. (1999) Gravity evidence for mid-crustal domal structure below Delhi fold belt and Bhilwara supergroup of western India. Geophys. Res. Lett., v.26, pp.2793–2795. doi:https://doi.org/10.1029/1999GL005359

    Article  Google Scholar 

  • Bansal, A.R. and Dimri, V.P. (2001) Depth estimation from the scaling power spectral density of nonstationary gravity profile, Pure Appl. Geophys., v.158, pp.799–812.

    Google Scholar 

  • Bansal, A.R. and Dimri, V.P. (2005) Depth determination from nonstationary magnetic profile for scaling geology, Geophys. Prospect., v.53, pp.399–410.

    Google Scholar 

  • Bansal, A.R., Dimri, V. P. and Sagar, G.V. (2006a) Depth estimation from gravity data using the maximum entropy method (MEM) and multi taper method (MTM). Pure Appl. Geophys., v.163, pp.1417–1434.

    Article  Google Scholar 

  • Bansal, A.R. Dimri, V.P. and Sagar, G.V. (2006b) Quantitative interpretation of gravity and magnetic data over Southern Granulite Terrain using scaling spectral approach. Jour. Geol. Soc. India, v.67, pp.469–474.

    Google Scholar 

  • Bansal, A.R., Gabriel, G. and Dimri, V.P. (2010) Power law distribution of susceptibility and density and its relation to seismic properties: An example from the German Continental Deep Drilling Program. Jour. Appl. Geophys., v.72, pp.123–128, doi:https://doi.org/10.1016/j.jappgeo.2010.08.001

    Article  Google Scholar 

  • Bansal, A.R. and Dimri, V.P. (2010) Scaling Spectral Analysis: A new tool for interpretation of gravity and magnetic data. e-Jour. Earth Sci. India, v.3(1), pp.54–68.

    Google Scholar 

  • Bansal, A.R., Gabriel, G., Dimri, V.P. and Krawczyk, C.M. (2011) Estimation of the depth to the bottom of magnetic sources by a modified centroid method for fractal distribution of sources: an application to aeromagnetic data in Germany. Geophysics, v.76, pp.L11–22, doi:https://doi.org/10.1190/1.3560017

    Article  Google Scholar 

  • Bansal, A.R., Anand, S.P., Rajaram, M., Rao, V.K. and Dimri, V.P. (2013) Depth to the bottom of magnetic sources (DBMS) from aeromagnetic data of central India using modified centroid method for fractal distribution of sources. Tectonophysics, v.603, pp.155–161, doi:https://doi.org/10.1016/j.tecto.2013.05.024

    Article  Google Scholar 

  • Bansal, A.R. and Dimri, V.P. (2014) Modeling of Magnetic Data for Scaling Geology. Geophys. Prospect., v.62(2), pp.385–396, doi: https://doi.org/10.1111/13652478.12094.

    Article  Google Scholar 

  • Bansal, A.R., Dimri, V.P., Kumar, R. and Anand, S.P. (2016a) Curie Depth estimation from aeromagnetic for fractal distribution of sources. In: V.P. Dimri (Ed.), Fractal solutions for understanding complex system in earth sciences. Springer Earth System Sciences, pp.19–31.

  • Bansal, A.R., Rao, V.K. and Dimri, V.P. (2016b) Interpretation of gravity Data of Kutch (India), an intra-plate seismic region, using scaling spectral method. Jour. Indian Geophys. Union, v.20(1), pp.40–48.

    Google Scholar 

  • Bath, M. (1974) Spectral analysis in geophysics, Elsevier Scientific Publishing Company, Amsterdam, pp.563.

    Google Scholar 

  • Blakely, R.J. (1995) Potential theory in gravity and magnetic applications. Cambridge Univ. Press, pp.441.

  • Bouligand, C., Glen, J.M.G. and Blakely, R.J. (2009) Mapping Curie temperature depth in the western United States with a fractal model for crustal magnetization, Jour. Geophys. Res., v.114, B11104, doi:https://doi.org/10.1029/2009JB006494

    Article  Google Scholar 

  • Chopping, R. and Kennett, B.L.N. (2015) Maximum depth of magnetization of Australia, its uncertainty and implications for Curie depth. Geo. Res. Jour, v.7, pp.70–77.

    Google Scholar 

  • Dimri, V.P. and Srivastava, K. (1987) Ideal performance criteria for deconvolution operators. Geophys. Prospect., v.35(5), pp.539–547.

    Article  Google Scholar 

  • Dimri, V.P. and Srivastava, K. (1990) The optimum gate length for the time varying deconvolution operator. Geophys. Prospect., v.38(4), pp.405–410.

    Article  Google Scholar 

  • Dimri, V.P. (1998) Fractal behavior and detectability limits of geophysical surveys. Geophysics, v.63(6), pp.1943–1946.

    Article  Google Scholar 

  • Dimri, V.P. (2000) Application of fractals in earth sciences, A.A. Balkema, USA/Oxford & IBH, Publishing Co. Pvt. Ltd., New Delhi, pp.238.

  • Dimri, V. P. (2005) Fractal behavior of the earth system. Springer, New York.

    Book  Google Scholar 

  • Dimri, V.P. and Ganguli, S.S. (2019) Fractal Theory and its implication for acquisition, processing and Interpretation (API) of Geophysical Investigation: a review. Jour. Geol. Soc. India, v.93, pp.142–152.

    Article  Google Scholar 

  • Fedi, M., Quarta, T. and Santis, A.D. (1997) Inherent power-law behavior of magnetic field power spectra from a Spector and Grant ensemble. Geophys., v.62, pp.1143–1150. doi:https://doi.org/10.1190/1.1444215

    Article  Google Scholar 

  • Fedi, M., Hansen P.C. and Paoletti, V. (2005) Analysis of depth resolution in potential field inversion. Geophysics, v.70, pp.A1–A11.

    Article  Google Scholar 

  • Fedi, M. (2016) Scaling laws in geophysics: Application to potential fields of methods based on the laws of self-similarity and homogeneity. In: V.P. Dimri (Ed.), Fractal solutions for understanding complex system in earth sciences, Springer Earth System Sciences, pp.1–18.

  • Gregotski, M.E., Jensen, O.G. and Arkani-Hamed, J. (1991) Fractal stochastic modeling of aeromagnetic data. Geophysics, v.56, pp.1706–1715.

    Article  Google Scholar 

  • Gupta, H.K., Harinarayan, T., Kousala M., Mishra D.C., Mohan, Indra, Puranachandra Rao, N., Raju, P.S., Rastogi, B. K., Reddy, P. R. and Sarkar, D. (2001) Bhuj earthquake of 26 January 2001. Jour. Geol. Soc. India, v.57(3), pp.275–278.

    Google Scholar 

  • Kumar, R., Bansal, A.R., Anand, S.P., Rao, V.K. and Singh, U.K. (2018) Mapping of magnetic basement in Central India from aeromagnetic data for scaling geology. Geophys. Prospect., v.66, pp.226–239. doi:https://doi.org/10.1111/1365-2478.12541

    Article  Google Scholar 

  • Kumar, R., Bansal, A.R. and Ghods, A. (2020) Estimation of depth to bottom of magnetic sources using spectral methods: Application on Iran’s aeromagnetic data. Jour. Geophys. Res.: Solid Earth, v.125, e2019JB018119. doi:https://doi.org/10.1029/2019JB018119

    Google Scholar 

  • Kumar, R., Bansal, A.R., Betts, P.G. and Ravat, D. (2021) Re-assessment of the Depth to the Base of Magnetic Sources (DBMS) in Australia from aeromagnetic data using the de-fractal method, Geophys. Jour. Internat., v.225, pp.530–547, doi:https://doi.org/10.1093/gji/ggaa601.

    Google Scholar 

  • Leonardi, S. and Kumpel, H.J. (1998) Variability of geophysical log data and the signature of crustal heterogeneities at the KTB. Geophys. Jour. Internat., v.135, pp.964–974.

    Article  Google Scholar 

  • Li, C-F., Lu, Y. and Wang, J. (2017) A global reference model of Curie-point depths based on EMAG2, Scientific Reports, Nature, v.7, 45129.

    Google Scholar 

  • Mandal, P., Rastogi, B.K., Satyanaryana, H.V.S., Kousalya M., Vijayraghavan, R., Satyamurthy, C., Raju, I.P., Sarma, A.N.S. and Kumar, N. (2004) Characterization of the causative fault system for the Bhuj earthquake of Mw 7.7. Tectonophysics, v.378(12), pp.105–121.

    Article  Google Scholar 

  • Mandelbrot, B.B. (1967) How long is the coast of Britain? Statistical self-similarity and fractional dimension, Science, v.156, pp.636–638.

    Article  Google Scholar 

  • Maus, S. (1995) Potential field power spectrum inversion for scaling geology, Ph.D. Thesis, Osmania University, Hyderabad.

    Book  Google Scholar 

  • Maus, S. and Dimri, V.P. (1994) Scaling properties of potential fields due to scaling sources. Geophys. Res. Lett., 21891–894. doi:https://doi.org/10.1029/94GL00771.

  • Maus, S. and Dimri, V.P. (1995a) Potential field power spectrum inversion for scaling geology. Jour. Geophys. Res., v.100(B7), pp.12605–12616.

    Article  Google Scholar 

  • Maus, S. and Dimri, V.P. (1995b) Basin depth estimation using scaling properties of potential fields. Jour. Assoc. Expl. Geophys., v.16(3), pp.131–139.

    Google Scholar 

  • Maus, S. and Dimri, V.P. (1996) Depth estimation from the scaling power spectrum of potential field?, Geophys. Jour. Internat., v.124, pp.113–120.

    Google Scholar 

  • Maus, S. (1999) Variogram analysis of magnetic and gravity data. Geophysics, v.64(3), pp.776–784.

    Article  Google Scholar 

  • Maus, S., Gordon D. and Fairhead, J.D. (1997) Curie temperature depth estimation using a self-similar magnetization model. Geophys. Jour. Internat., v.129, pp.163–168, doi:https://doi.org/10.1111/j.1365-246X.1997.tb00945.x

    Article  Google Scholar 

  • Naidu, P.S. (1968) Spectrum of the potential field due to randomly distributed source. Geophysics, v.33(2), pp.337–345.

    Article  Google Scholar 

  • Naidu, P.S. (1970) Statistical structure of aeromagnetic field. Geophysics, v.35(2), pp.279–292.

    Article  Google Scholar 

  • Nwankwo, L.I. (2015) Estimation of depths to the bottom of magnetic sources and ensuing geothermal parameters from aeromagnetic data of Upper Sokoto Basin, Nigeria. Geothermics, v.54, pp.76–81.

    Article  Google Scholar 

  • Pawlowski, R.S. (1994) Green’s equivalent-layer concept in gravity bandpass filter design. Geophysics, v.59(1), pp.69–76.

    Article  Google Scholar 

  • Pawlowski, R.S. (1995) Preferential continuation for potential — field anomaly enhancement, Geophysics, v.60(2), pp.390–398.

    Article  Google Scholar 

  • Pilkington, M. and Todoeschuck, J.P. (1990) Stochastic inversion for scaling geology, Geophys. Jour. Internat., v.102, pp.205–217.

    Google Scholar 

  • Pilkington, M. and Todoeschuck, J.P. (1993). Fractal magnetization of continental crust. Geophys. Res. Lett., v.20, pp.627–630, doi:https://doi.org/10.1029/92GL03009

    Article  Google Scholar 

  • Pilkington, M., Gregotski, M.E. and Todoeschuck, J.P. (1994) Using fractal crustal magnetization models in magnetic interpretation. Geophys. Prospect., v.42, pp.677–692.

    Article  Google Scholar 

  • Pilkington, M. and Todoeschuck, J.P. (1995) Scaling nature of crustal susceptibilities. Geophys. Res. Lett., v.22(7), pp.779–782.

    Article  Google Scholar 

  • Pilkington, M. and Todoeschuck, J. P. (2004) Power-law scaling behavior of crustal density and gravity, Geophys. Res. Letts., v.31, L09606.

    Article  Google Scholar 

  • Prasad, A.S.S.R.S., Sarkar, D. and Reddy, P.R. (2002) Identification and usage of multiples in crustal seismic — An application in the Bengal Basin, India, Curr. Sci., v.82(8), pp.1033–1037.

    Google Scholar 

  • Quarta, T., Fedi, M. and Santis, A.D. (2000) Source ambiguity from an estimation of the scaling exponent of potential field power spectra, Geophys. Jour. Internat., v.140, pp.311–323.

    Google Scholar 

  • Quintero, W., Campos-Enriquez, O. and Hernandez, O. (2019) Curie point depth, thermal gradient and heat flow in the Colombian Caribbean (northwestern South ASmerica). Geothermal Energy, pp.7–18.

  • Ram, A. (2000) Processing and interpretation of nonstationary gravity and magnetic data for scaling geology, Ph. D. Thesis, Osmania University, Hyderabad.

    Google Scholar 

  • Ravat, D., Pignatelli, A., Nicolosi, I. and Chiappini, M. (2007) A study of spectral methods of estimating the depth to the bottom of magnetic sources from near-surface magnetic anomaly data. Geophys. Jour. Internat., v.169, pp.421–434, doi:https://doi.org/10.1111/j.1365-246X.2007.03305.x

    Article  Google Scholar 

  • Reddy, P.R., Venkateswarlu, N., Prasad, A.S.S.S.R.S. and Rao, P.K., 1993, Crustal density model across West Bengal Basin, India: An integrated interpretation of seismic and gravity data, Proc. Indian Acad. Sci. (Earth Planet. Sci.), v.102, pp.487–505.

    Article  Google Scholar 

  • Reddy, P.R., Prasad, B.R., Rao, V.V., Sain, K., Rao, P.P., Khare, P. and Reddy, M.S. (2003) Deep seismic reflection and refraction/wide-angle reflection studies along Kuppam-Palani Transect in the southern Granulite Terrain of India, Mem. Geol. Soc. India, no.50, pp.79–106.

  • Roy, A. (1962) Ambiguity in geophysical interpretation, Geophysics, v.27, pp.90–99.

    Article  Google Scholar 

  • Salem, A., Green, C., Ravat, D., Singh, H. K., East, P., Fairhead, J. D., Morgen, S. and Biegert, E. (2014) Depth to Curie temperature across the central Red Sea from magnetic data using the de-fractal method. Tectonophysics, v.624–625, pp.75–86.

    Article  Google Scholar 

  • Shiomi, K., Sato, H. and Ohtake, M. (1997) Broad-band power-law spectra of well-log data in Japan, Geophys. Jour. Internat., v.130, pp.57–64.

    Google Scholar 

  • Spector, A. and Grant, F. S. (1970) Statistical model for interpreting aeromagnetic data. Geophysics, v.35, pp.293–302. doi:https://doi.org/10.1190/1.1440092

    Article  Google Scholar 

  • Teknik, V. and Ghods, A. (2017) Depth of magnetic basement in Iran based on fractal spectral analysis of aeromagnetic data. Geophys. Jour. Internat., v.209, pp.1878–1891. doi:https://doi.org/10.1093/gji/ggx132.

    Article  Google Scholar 

  • Todoeschuck, J.P. and Jensen, O.G., (1989) Scaling geology and seismic deconvolution. Pure Appl. Geophys., v.131, pp.273–287.

    Article  Google Scholar 

  • Todoeschuck, J.P., Jensen, O.G. & Labonte, S., 1990, Gaussian scaling noise model of seismic reflection sequences; evidence from well logs. Geophysics, v.55(4), pp.480–484.

    Article  Google Scholar 

  • Treitel, S., Clement, W.G. and Kaul, R.K. (1971) The spectral determination of depths of buried magnetic basement rocks. Geophys. Jour. Roy. Astr. Soc., v.24, pp.415–428.

    Article  Google Scholar 

  • Turcotte, D.L. (1997) Fractals and Chaos in Geology and Geophysics, 2nd Edition, Cambridge University Press.

  • Wang, R.J. (1969) The determination of optimum gate lengths for time varying Wiener filtering, Geophysics, v.34(5), pp.683–695.

    Article  Google Scholar 

  • Zhou, S. and Thybo, H. (1998) Power spectra analysis of aeromagnetic data and KTB susceptibility logs, and their implication for fractal behavior of crustal magnetization, Pure Appl. Geophys., v.151, pp.147–159.

    Google Scholar 

Download references

Acknowledgments

We are thankful to the Director, CSIR-NGRI, for permission to publish this manuscript. We are also grateful to Mr. Tony Saini, Dr. Raj Kumar and Mr. KND Prasad for the valuable discussion. We are thankful to Dr. Bijender Singh and Dr. Mahak Singh for constructive comments on our manuscript. VPD thanks INSA for awarding INSA Honorary Scientist at CSIR-NGRI, Hyderabad.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Dimri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dimri, V.P., Bansal, A.R. Review of Scaling Approach to Estimate Depths from Gravity and Magnetic Data. J Geol Soc India 97, 1300–1306 (2021). https://doi.org/10.1007/s12594-021-1860-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12594-021-1860-6

Navigation