Skip to main content
Log in

Provenance and Depositional Setting of Black Shales from the Dhalbhum Formation, North Singhbhum Mobile Belt, Eastern India

  • Research Articles
  • Published:
Journal of the Geological Society of India

Abstract

The Paleoproterozoic black shales of the Dhalbhum Formation exposed to the north of the Dalma metavolcanic suite is comprised of siliciclastic rocks and a minor amount of carbonaceous rocks. Geochemical studies were carried out to study the provenance and depositional setting of black shales. The average values of Co, V, U, and Cr/V (1.29) and Ni/Co (2.77) ratios in the black shales of Dhalbhum Formation are higher as compared to those of the Post-Archean Australian shale (PAAS) values (Cr/V=0.73, Ni/Co=2.39). The chondrite normalized rare earth elements (REEs) patterns, indicate the enrichment in LREE (ELREE/HREE =10.73) and flat HREEs. The immobile element ratios Th/Sc (1.14), Th/Co (1.120), Cr/Th (16.161), and La/Sc (2.80) of studied samples indicate that sediments were derived from felsic rocks, which is also corroborated by La-Th-Sc ternary diagram. The sediments deposited at the active continental margin generally show REE pattern intermediate between a typical andesite and PAAS. A continental margin tectonic setting is distinguished by La-Th-Sc, Th-Co-Zr/10 and Th-Sc-Zr/10, which is further corroborated by Yb vs Th/Ta diagram where the samples plot in the field of active continental margin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baidya, T.K. (2015) Archean Metallogeny and crustal evolution in the East Indian Shield. Earth Sciences, v.4, pp.1–14.

    Article  Google Scholar 

  • Balaram, V., Gnaneshwara Rao, T. (2003) Rapid determination of REEs and other trace elements in geological samples by microwave acid digestion and ICP-MS. Atomic Spectroscopy, v.24, pp. 206–212.

    Google Scholar 

  • Basu, A.R., Ray, S.L., Saha, A.K., Sarkar, S.N. (1981) Eastern Indian 3800 Million year-old crust and mantle differentiation. Science, v.212, pp.1502–1506.

    Article  Google Scholar 

  • Bhat, N.A., Singh, B.P., Bhat, A.A., Nath, S., Guha, D.B. (2019) Application of geochemical mapping in unraveling paleoweathering and provenance of Karewa sediments of South Kashmir, NW Himalayas, India. Jour. Geol. Soc. India, v.93(1), pp.68–74.

    Article  Google Scholar 

  • Bhatia, M.R. (1983) Plate tectonics and geochemical composition of sandstones. Jour. Geol., v.91(6), pp.611–627.

    Article  Google Scholar 

  • Bhatia, M.R, Crook, K.A. (1986) Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins. Contrib. Mineral. Petrol., v.92, pp.181.

    Article  Google Scholar 

  • Bhattacharya, H.N. (1991) A reappraisal of the depositional environment of the Precambrian metasediments around Ghatshila-Galudih, eastern Singhbhum. Jour. Geol. Soc. India, v.37, pp.47–54.

    Google Scholar 

  • Bhattacharya, S. (1992) Evolution of Singhbhum mobile belt by continental rifting and implications of the geochemistry of Purulia amphibolites. Indian Jour. Earth Sci., v.19, pp.9–17.

    Google Scholar 

  • Bhattacharya, H.N., Bandyopadhyay, S. (1998) Seismites in a Proterozoic tidal succession, Singhbhum, Bihar, India. Sediment. Geol., v.119, pp.239–352.

    Article  Google Scholar 

  • Bhattacharya, H.N., Mahapatra, S. (2008) Evolution of the Proterozoic rift margin sediments—North Singhbhum Mobile Belt, Jharkhand-Orissa, India. Precambrian Res., v.162, pp.302–316.

    Article  Google Scholar 

  • Bose, M.K. (1994) Sedimentation pattern and tectonic evolution of the ProterozoicSinghbhum basin in the eastern Indian shield. Tectonophysics, v.231, pp.325–346.

    Article  Google Scholar 

  • Bose, P. K., Mazumder, R., Sarkar, S. (1997) Tidal sandwaves and related storm deposits in the transgressive Protoproterozoic Chaibasa Formation, India. Precambrian Res., v.84, pp.63–81.

    Article  Google Scholar 

  • Bose, M.K., 2009. Precambrian mafic magmatism in the Singhbhum Craton, eastern India. Jour. Geol. Soc. India, v.73, pp.13–35.

    Article  Google Scholar 

  • Chakraborti, M.K. (1980) On the Pyroclastic Rocks of Dalma Volcanic Sequence, Singhbhum, Bihar. Indian Jour. Earth Sci., v.7, pp.216–222.

    Google Scholar 

  • Chakraborti, M.K., Bose, M.K. (1985) Evaluation of the Tectonic Setting of Precambrian Dalma Volcanic Belt, Eastern India Using Trace Element Data. Precambrian Res., v.28, pp.253–268.

    Article  Google Scholar 

  • Condie K. C. and Wronkiewicz D. J. (1990) A new look at the Archean-Proterozoic boundary: Sediments and the tectonic setting constraint. In: S.M. Naqvi (Ed.), Precambrian Continental Crust and Its Economic Resources, pp.61–84.

  • Condie K.C. and Wronkiewicz D.J. (1990) The Cr/Th ratio in Precambrian pelites from the Kaapvaal Craton as an index of craton evolution. Earth Planet. Sci. Lett., v.97, pp.256–267.

    Article  Google Scholar 

  • Condie, K.C. (1993) Chemical composition and evolution of the upper continental crust contrasting results from surface samples and shales. Chem. Geol., v.104, pp.1–37.

    Article  Google Scholar 

  • Cullers, R.L. (1995) The controls on the major-and trace-element evolution of shales, siltstones, and sandstones of Ordovician to Tertiary age in the Wet Mountains region, Colorado, USA. Chem. Geol., v.123, pp.107–131.

    Article  Google Scholar 

  • Cullers, R.L. (2000) Geochemistry of the Mesoproterozoic Lakhanda shales in southeastern Yakutia, Russia: implications for mineralogical and provenance control, and recycling. Precambrian Res., v.104, pp.77–93.

    Article  Google Scholar 

  • Cullers, R.L. (2002) Implications of elemental concentrations for provenance, redox conditions, and metamorphic studies of shales and limestones near Pueblo, CO, USA. Chem. Geol., v.191(4), pp.305.

    Article  Google Scholar 

  • Cullers, R.L., Podkovyrov, V.N. (2002) The source and origin of terrigenous sedimentary rocks in the Mesoproterozoic Ui group, southeastern Russia, Precambrian Res., v.117, pp.157–183.

    Article  Google Scholar 

  • De Wit, M.J. and Ashwal, L.D. (1995) Greenstone belts, what are they? S. African Jour. Geol., v.98, pp.505–520.

    Google Scholar 

  • Dunn, J.A., and Dey, A.K. (1942) The geology and petrology of eastern Singhbhum and surrounding areas. Mem. Geol. Surv. India, No.69, pt. 2, pp.281–450.

  • Gorton, M.P., Schandl, E.S. (2000) From continents to island arcs: a geochemical index of tectonic setting for arc-related and within-plate felsic to intermediate volcanic rocks. The Canadian Mineralogist, v.38, pp.1065–1073.

    Article  Google Scholar 

  • Gupta, A., Basu, A. and Ghosh, P.K. (1980) The Proterozoic ultramafic and mafic lavas and tuffs of the Dalma greenstone belt, Singhbhum, eastern India. Canadian Jour. Earth Sci., v. 17, pp.210–231.

    Article  Google Scholar 

  • Gupta, A., Basu, A. and Singh, S.K. (1985) Stratigraphy and petrochemistry of Dhanjori greenstone belt, eastern India. Quart. Jour. Geol. Min. Met. Soc. India, v.57, pp.248–263.

    Google Scholar 

  • Gupta, A. and Basu, A. (2000) North Singhbhum Proterozoic mobile belt, eastern India- a review. Geol. Surv. India Spec. Publ., no.55, pp.195–226.

  • Iyengar, S.V.P. and Alwar, M.A. (1965) The Dhanjori eugeosyncline and its bearing on the stratigraphy of Singhbhum, Keonjhar and Mayurbhanj districts. D.N. Wadia Commem. Vol., Min. Geol. Met. Inst. India, pp.138–162.

  • Iyengar, S.V.P., Murthy, Y.G..K. (1982) The evolution of the Archaean-Proterozoic crust in parts of Bihar and Orissa, eastern India. Rec. Geol. Surv. India, v. 112, pp.1–5.

    Google Scholar 

  • Kumar, A., Parashuramulu, V., Shankar, R., Besse, J. (2017) Evidence for a Neoarchean LIP in the Singhbhum craton, eastern India: Implications to Vaalbara supercontinent. Precambrian Res., v.292, pp.163–174.

    Article  Google Scholar 

  • Li, D.F., Chen, H.Y., Li Z., Fralick, P., Hollings, P., Mi, M., Lu, W.J., Han, J.S., Wang, C.M., Fang, J. (2017) Geochemistry of fine-grained clastic rocks in the Mesoproterozoic Kawabulake Group: implications for provenance and the tectonic model of the Eastern Tianshan, Xinjiang, NW China. Internat. Jour. Earth Sci., v.106, pp.115–129.

    Article  Google Scholar 

  • Mahadevan, T.M. (2002) Geology of Bihar and Jharkhand, Text Book Series, Geological Society of India, Bangalore.

    Google Scholar 

  • Mazumder, R. (2003) Correlations between the Eastern Block of the North China Craton and the South Indian Block of the Indian Shield: an archaean to palaeoproterozoic link — Comment. Precambrian Res., v. 127, pp.379–380.

    Article  Google Scholar 

  • Mazumder, R. (2005) Proterozoic sedimentation and volcanism in the Singhbhum crustal province, India and their implications. Sediment. Geol., v. 176, pp.167–193.

    Article  Google Scholar 

  • Mazumder, R., Reddy, S., Clark, C. (2010) Temporal constraints on the evolutionof the Singhbhum Crustal Province from UePb SHRIMP data. In: Tyler, I.M., Knox-Robinson, C.M. (Eds.), Fifth International Archean Symposium Abstract. Geol. Surv. Western Australia, p.193, Record 2010/18.

  • Mazumder, R., Van Loon, A.J. (2012) Depositional history of diamictites from the Late Paleoproterozoic Dalma Formation (E India). Sediment. Geol., v.251–252, pp.49–57.

    Article  Google Scholar 

  • McDaniel, D.K., Hemming, S.R., McLennan, S.M. and Hanson, G.N. (1994) Resetting of neodymium isotopes and redistribution of REEs during sedimentary processes: The early Proterozoic Chelmsford Formation, Sudbury Basin, Ontario, Canada. Geochim. Cosmochim. Acta, v.58, pp.931–941.

    Article  Google Scholar 

  • Mclennan, S.M., Nance, W.B and Taylor, S.R. (1980) Rare earth elementthorium correlations in sedimentary rocks, and the composition of the continental crust, Geochim. Cosmochim. Acta, v.44, pp.1833–1839.

    Article  Google Scholar 

  • McLennan, S.M. (1989) Rare earth elements in sedimentary rocks; influence of provenance and sedimentary processes. In: Lipin, B.R., McKay, G.A. (Eds.), Geochemistry and Mineralogy of Rare Earth Elements. Rev. Mineral., v.21, pp.169–200.

  • McLennan, S.M., Taylor, S.R., McCulloch, M.T., Maynard, J.B. (1990) Geochemical and Nd-Sr isotopic composition of deep-sea turbidites: Crustal evolution and plate tectonic associations. Geochim. Cosmochim. Acta, v.54, pp.2015–2050.

    Article  Google Scholar 

  • McLennan, S.M. and Taylor, S.R. (1991) Sedimentary rocks and crustal evolution: tectonic setting and secular trends. Jour. Geol., v.99, pp.1–21.

    Article  Google Scholar 

  • McLennan, S.M., Hemming, S., McDaniel, D. and Hanson, G., (1993) Geochemical approaches to sedimentation, provenance and tectonics, Geol. Soc. Amer. Spec. Paper 284, pp.21–40.

    Google Scholar 

  • Mir, A.R. (2015) Rare earth element geochemistry of Post- to Neo-archean shales from Singhbhum mobile belt, Eastern India: implications for tectonic setting and paleooxidation conditions, Chinese Jour. Geochem., v.34(3), pp.401–409.

    Article  Google Scholar 

  • Mir, A.R., Bhat, Z. A., Alvi, S.H., Balaram, V. (2015) Geochemistry of black shales from Singhbhum mobile belt, Eastern India:implications for paleo-weathering and provenance. Himalayan Geol., v.36(2), pp.126–133.

    Google Scholar 

  • Misra, S., Deomurari, M.P., Wiedenbeck, M., Goswami, J.N., Ray, S. and Saha, A.K. (1999) 207Pb/206Pb zircon ages and the evolution of the Singhbhum craton, eastern India. an ion microprobe study. Precambrian Res., v.93, pp.139–151.

    Article  Google Scholar 

  • Misra, S. and Johnson, P.T. (2005) Geochronological constraints on the evolution of the Singhbhum Mobile Belt and associated basic volcanics of eastern Indian shield. Gondwana Res., v.8, pp.129–142.

    Article  Google Scholar 

  • Misra, S. (2006) Precambrian chronostratigraphic growth of Singhbhum-Orissa Craton, eastern Indian shield: an alternative model. Jour. Geol. Soc. India, v.67, pp.356–378.

    Google Scholar 

  • Mohanty, S. (2012) Spatio-temporal evolution of the Satpura Mountain Belt of India: a comparison with the Capricorn Orogen of Western Australia and implication for evolution of the supercontinent Columbia. Geosci. Front., v.3, pp.241–267.

    Article  Google Scholar 

  • Moorbath, S., Taylor, P.N. and Jones, N.W. (1986) Dating the oldest terrestrial rocks — facts and fiction. Chemical Geol., v.57, pp.63–86.

    Article  Google Scholar 

  • Mukhopadhyay, D., Bhattacharya, T., Chakraborty, T. and Dey, A.K. (1990) Structural pattern in the Precambrian rocks of Sonua-Lotapahar region, north Singhbhum, eastern India. Proc. Indian Acad. Sci. (EPS), v.99, pp.249–268.

    Google Scholar 

  • Mukhopadhyay D. (2001) The Archaean Nucleus of Singhbhum: the present state of knowledge. Gondwana Res., v.4, pp.307–318.

    Article  Google Scholar 

  • Mukhopadhyay, J., Beukes, N.J., Armstrong, R.A., Zimmermann, U., Ghosh, G., Medda, R.A. (2008a) Dating the oldest greenstone in India: a 3.51-Ga precise U-PbSHRIMP zircon age for dacitic lava of the Southern Iron Ore Group, Singhbhum Craton. Jour. Geol., v.116, pp.449–461.

    Article  Google Scholar 

  • Nagarajan, R., Madhavaraju, J., Nagendra, R., Selvamony, J., Armstrong-Altrin, J.S., Moutte J. (2007) Geochemistry of Neoproterozoic shales of the Rabanpalli Formation, Bhima Basin, Northern Karnataka, Southern India: implications for provenance and paleoredox conditions. Revista Mexicana de Ciencias Geolo’gicas, v.24(2), pp.150.

    Google Scholar 

  • Naha, K. (1960) Granitic emplacement in relation to thrusting in south Dhalbhum and northeastern Mayurbhanj. Quart. Jour. Geol. Min. Met. Soc. India, v.32, pp.115–122.

    Google Scholar 

  • Nesbitt, H. W., Young, G. M., McLennan, S.M. and Keays, R.R. (1996) Effects of chemical weathering and sorting on the petrogenesis of siliciclastic sediments, with implications for provenance studies. Jour. Geol., v.104, pp.525–542.

    Article  Google Scholar 

  • Ray, K.K., Ghosh Roy, A.K. and Sengupta, S. (1996) Acid volcanic rocks between the Dalma volcanic belt and the Chhotanagpur Gneissic Complex, East Singhbhum and Purulia districts of Bihar and West Bengal, Indian Minerals, v.50, pp.1–8.

    Google Scholar 

  • Roser, B.P. and Korsch, R.J. (1986) Determination of tectonic setting of sandstone-mudstone suites using SiO2 and K2O/Na2O ratio, Jour. Geol., v.94, pp.635–650.

    Google Scholar 

  • Roser, B.P., and Korsch, R.J. (1988) Provenance Signature of Sandstone-Mudstone Suites Determined Using Discriminant Function Analysis of Major Element Data. Chemical Geol., v.67, pp.119–139.

    Article  Google Scholar 

  • Roy, A., Sarkar, A., Jeyakumar, S., Aggrawal, S.K. and Ebihara, M. (2002b) Sm-Nd age and mantle source characteristics of the Dhanjori volcanic rocks, Eastern India. Geochem. Jour., v.36, pp.503–518.

    Article  Google Scholar 

  • Saha, A.K., Ray S.L. and Sarkar S.N. (1988) Early history of the earth: eveidence from the eastern Indian shield. Jour. Geol. Soc. India. v.8, pp.13–88.

    Google Scholar 

  • Saha, A.K. (1994) Crustal evolution of Singhbhum-North-Odisha, Eastern India. Mem. Geol Soc. India, no.27, pp. 341.

  • Sarkar, S.N. and Saha, A.K. (1962) A revision of Precambrian and tectonics of the Singhbhum and adjacent region. Quart. Jour. Geol. Min. Met. Soc. India, v.34, pp.97–136.

    Google Scholar 

  • Sarkar, S.N., Saha, A.K. (1977) The present status of the Precambrian stratigraphy, tectonics and geochronology of Singhbhum-Keonjhar-Mayurbhanj region, eastern India. Indian Jour. Earth Sci., Ray Volume, pp.37–65.

  • Sarkar, S.C. (1984) Geology and ore mineralisation of the Singhbhum copper-uranium belt, Eastern India. Jadavpur University, Calcutta, 263p.

    Google Scholar 

  • Sarkar, S.N., Ghosh, D., Lambert St, R.J. (1986) Rubidium-strontium and lead isotopic studies on the Soda Granites from Mosaboni, Singhbhum copper belt, E. India. Indian Jour. Earth Sci., v.13, pp.101–116.

    Google Scholar 

  • Satyanarayanan, M., Balaram, V., Sawant, S. S., Subramanyam K. S. V., and Krishna, G. V. (2014) High precision multielement analysis on geological samples by HR-ICP-MS; In: Aggarwal S K, Jaisan P G and Sarkar A. (Eds.), Proc. 28th ISMAS Symposium and Workshop on Mass Spectrometry, ISMAS Secretariat, Mumbai, pp.181–184.

    Google Scholar 

  • Sengupta, S., Paul, D.K., de Laeter, J.R., McNaughton, N.J., Bandyopadhyay, P.K., deSmeth, J.B. (1991) Mid-Archaean evolution of the eastern Indian craton: geochemical and isotopic evidence from the eastern Indian craton. Contrib. Mineral. Petrol., v.117, pp.45–55.

    Google Scholar 

  • Sengupta, S., Bandyopadhyay, P.K., Van Den Hul, H.J. and Chattopadhyay, B. (1984) Arkasani Granophyre: Proterozoic intraplate acid magmatic activity in the Singhbhum Craton, Eastern India. Neues Jahrbuch für Mineralogie Abhandlung, v.148, pp.328–43.

    Google Scholar 

  • Sengupta, S., Sarkar, G., Ghosh, R., Bhaduri, S.K., Gupta, S.N., Mandal, A. (2000) Geochemistry and Rb-Sr geochronology of acid tuffs from the northern fringe of the Singhbhum craton and their significance in the Precambrian evolution. Indian Minerals, v.54(1–2), pp.43–56.

    Google Scholar 

  • Sharma, R.S. (2009) Cratons and Fold Belts of India. Springer Verlag, Heidelberg, 324p.

    Google Scholar 

  • Singh, S.P. (1997) Geochemistry of acid volcanics of the Dalma Group, Singhbhum, Eastern India. Jour. Geol. Soc. India, v.49, pp.437–441.

    Google Scholar 

  • Singh, S.P. (1998) Precambrian stratigraphy of Bihar, an overview. In: B.S. Paliwal (Ed.), The Indian Precambrian. Scientific Publ., Jodhpur, pp.376–408.

    Google Scholar 

  • Singh, S.P., and Nim, S.P. (1998) Stratigraphy of the lower Proterozoic sequence of Patharchakri-Mosboni area, Singhbhum, Bihar. Indian Minerals, v.52(1–2), pp.1–14.

    Google Scholar 

  • Taylor, S.R., McLennan, S.M. (1985) The continental crust: its composition and its evolution. Blackwell, Oxford, 312p.

    Google Scholar 

  • Thurston, P.C. (1990) Early Precambrian basic rocks of the Canadian Shield. In: Hall, R.P., Hughes, D.J. (Eds.), Early Precambrian Basic Magmatism. Blackie and Son Limited, pp.221–247.

  • Tripathi, J.K. and Rajamani, V. (2003) Weathering control over geomorphology of supermature Proterozoic Delhi quartzites of India. Jour. Geol. Soc. India, v.62(2), pp.215–226.

    Google Scholar 

  • Wronkiewicz, D.J., and Condie, K.C. (1987) Geochemistry of Archean shales from the Witwatersrand Supergroup, South Africa: Source- area weathering and provenance. Geochem. Cosmochim. Acta, v.51, pp.2401–2416.

    Article  Google Scholar 

Download references

Acknowledgement

The authors are thankful to Chairman, Department of Geology, A.M.U, Aligarh and Director, NGRI, Hyderabad for granting permission to carry out the chemical analysis of rock samples. We are also thankful to the reviewers for their valuable comments and suggestions. Authors are thankful to Drs. A.K. Krishna, M. Satyanarayan and S.S. Sawant in generating the geochemical data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naurin Khan Malik.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malik, N.K., Alvi, S.H. Provenance and Depositional Setting of Black Shales from the Dhalbhum Formation, North Singhbhum Mobile Belt, Eastern India. J Geol Soc India 97, 735–743 (2021). https://doi.org/10.1007/s12594-021-1754-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12594-021-1754-7

Navigation