Skip to main content
Log in

Heavy Mineral Analysis of Jamuna River Sediments, Bangladesh

  • Research Articles
  • Published:
Journal of the Geological Society of India

Abstract

The Jamuna is one of the world’s most heavily sediment-laden braided river. Despite a major host for heavy mineral resources, the sediments of the Jamuna river are sparsely studied. A mineralogical and SEM-EDS investigation has been carried out in the middle part (along Sirajganj and Jamalpur district of Bangladesh) of the Jamuna river to appraise the grain size parameter, texture, depositional environment, heavy mineral distribution, and elemental composition of the heavy minerals. The results show that sediment samples are very fine to fine sand, moderate to well sorted, near symmetrical to strongly fine skewed, and mesokurtic to very leptokurtic. Uniform to graded suspension mechanisms are the processes for sediment deposition. Heavy minerals accumulation ranges from 0.5% to 9.33%, and the assemblages are predominantly marked by epidote, amphibole, followed by opaque (magnetite and ilmenite), garnet, zircon, sillimanite, apatite, tourmaline, rutile, kyanite, staurolite, monazite, chlorite, and titanite. The percentage of amphibole, garnet, and zircon decreases downstream and epidote increases in the same direction. The calculated zircon-tourmaline-rutile index (ZTR) varied between 3 to 13%, average apatite-tourmaline index (ATi), garnet-zircon index (GZi), rutile-zircon index (RuZi) and staurolite-zircon index (SZi) values are 54.55%, 75%, 38.68%, and 30% respectively. The Brahmaputra-Jamuna river sediments are derived from mixed-source regions (e.g., Shillong Plateau, Indo-Burman Ranges, and the Himalayas). The abundance of sub-angular to angular, high relief heavy mineral grains with sharp edges on the surface, conchoidal fractures, deep troughs, and breakage blocks infer that the provenance is close to the depositional area. The presence of rounded to sub-rounded, smoother surface with adhering particles, arcuate steps, and low to medium relief indicate the long-distance transportation of heavy mineral grains through fluvial environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Abedin, M.J., Rahman, M.J.J., Sayem, A.S., and Abdullah, R. (2018) Heavy mineral distribution in sand deposits from the lower reaches of the Jamuna River, Bangladesh. Bangladesh Geosci. Jour., v.24, pp.1–15.

    Google Scholar 

  • Ahmed, S.S., and Islam, M.B. (2001) Economic minerals in beach sands of the south eastern Bangladesh. Handbook of placer mineral deposits, pp.280-294.

  • Akon, E. (2019) Mineralogy, geochemistry and economic potentialities of heavy mineral sand resources of Bangladesh. Jour. Nepal Geol. Soc., v.59, pp.1–8.

    Google Scholar 

  • Bae, W., Shim, H., Choi, D., Hwang, B., and Shin, E. (2002) Characteristics of contaminant release from lake sediment under different salinity and redox conditions. Geosci. Jour., v.6, pp.23–26.

    Article  Google Scholar 

  • Bristow, C.S. (1987) Brahmaputra River: Channel migration and deposition in: Ethridge, F.G., Flores, R.M., and Harvey, M.D. (Eds) Recent developments in fluvial sedimentology. Society of Economic Paleontologists and Mineralogists, v.39, pp.63-74.

  • Chowdhury, M.A. (1989) Petrography of the Sand Samples of the Brahmaputra-Jamuna River Bars. Geol. Surv. Bangladesh, v.5(5), pp.1–20.

    Google Scholar 

  • Coleman, J.M. (1969) Brahmaputra River: Channel processes and sedimentation. Sediment. Geol., v.3(2/3), pp.129–239.

    Article  Google Scholar 

  • Datta, D.K., and Subramanian, V. (1997) Texture and mineralogy of sediments from the Ganges-Brahmaputra-Meghna river system in the Bengal Basin, Bangladesh and their environmental implications. Environ. Geol., v.30, pp.181–188.

    Article  Google Scholar 

  • Dung, N.T., Bac, B.H., and Van Anh, T.T. (2017) Distribution and reserve potential of titanium-zirconium heavy minerals in Quang an Area, Thua Thien Hue Province, Vietnam. In: International conference on geospatial technologies and earth resources, Springer, Cham., pp.326–339.

    Google Scholar 

  • Flemming, B.W. (2007) The influence of grain-size analysis methods and sediment mixing on curve shapes and textural parameters: Implications for sediment trend analysis. Sediment. Geol., v.202, pp.425–435.

    Article  Google Scholar 

  • Folk, R.L., and Ward, W.C. (1957) Brazos River bar: A study in the significance of grain size parameters. Jour. Sediment. Petrol., v.27, pp.3–26.

    Article  Google Scholar 

  • Faulp, P., Pavlopoulos, A., and Migirons, G. (1998) On the provenance of flysch deposits in the External Hellenides of mainland Greece: results from heavy mineral studies. Geol. Magz., v.135, pp.421–442.

    Article  Google Scholar 

  • Galy, A., and France-Lanord, C. (2001) Higher erosion rates in the Himalaya geochemical constraints on riverine fluxes. Geology, v.29, pp.23–26.

    Article  Google Scholar 

  • Gandhi, M.S., and Raja, M. (2014) Heavy mineral distribution and geochemical studies of coastal sediments between Besant Nagar and Marakkanam, Tamil Nadu, India. Jour. Radiation Res. Appl. Sci., pp.1-13.

  • Garzanti, E., Vezzoli, G., Andò, S., France-Lanord, C., Singh, S.K., and Foster, G. (2004) Sand petrology and focused erosion in collision orogens: the Brahmaputra case. Earth Planet. Sci. Lett., v.220, pp.157–174.

    Article  Google Scholar 

  • Goswami, D.C. (1985) Brahmaputra River, Assam India: Physiography, Basin denudation, and channel aggradation. Water Resour. Res., v.21(7), pp.959–978.

    Article  Google Scholar 

  • Hasan, A.S.M.M., Hossain, I., Rahman, M.A., Rahman, M.S., Zaman, M.N., and Biswas, P.K. (2018) FEG-EPMA mapping and Fe-Ti oxide mineral chemistry of Brahmaputra River sediments in Bangladesh: provenance and petrogenetic implications. Arabian Jour. Geosci., v.11, pp.567.

    Article  Google Scholar 

  • Heroy, D.C., Kuehl, S.A., and Googbred, S.L. (2003) Mineralogy of the Ganges and Brahmaputra Rivers: implications for river switching and Late Quaternary climate change. Sediment. Geol., v.155, pp.343–359.

    Article  Google Scholar 

  • Islam, M.N. (2000) Braiding and channel morphodynamics: The Brahmaputra-Jamuna River, Bangladesh. Doctoral dissertation, The University of Hull, Imaging Services North, Boston Spa, Wetherby, West Yorkshire.

    Google Scholar 

  • Islam, M.R., Begum, S.F., Yamaguchi, Y., and Ogawa, K. (1999) The Ganges and Brahmaputra rivers in Bangladesh: basin denudation and sedimentation. Hydrol. Process, v.13, pp.2907–2923.

    Article  Google Scholar 

  • Järvelill, J.I., Kallaste, T., Kleesment, A., Pajusaar, S., and Raukas, A. (2019) Provenance of heavy minerals in the Quaternary deposits of the Lemme outcrop, Estonia, based on optical microscopy, X-ray diffractometry and scanning electron microscope microanalysis. Estonian Jour. Earth Sci., v.68, pp.76–87.

    Article  Google Scholar 

  • Jasy, J.B., Rahman, M.J.J., and Yeasmin, R. (2010) Sand petrology of the exposed bar deposits of the Brahmaputra-Jamuna River, Bangladesh: implications for provenance. Bangladesh Geosci. Jour., v.16, pp.1–22.

    Google Scholar 

  • Jia, X., Wang, H., and Wan, H. (2014) Sources and trace element geochemical characteristics of the coarse sediment in the Ningxia Inner Mongolia reaches of the Yellow River. Geosci. Jour., v.18, pp.181–192.

    Article  Google Scholar 

  • Kim, J.G., Ko, K., Kim, T.H., Lee, G.H., Song, Y., Chon, C., and Lee, J. (2007) Effect of mining and geology on the chemistry of stream water and sediment in a small watershed. Geosci. Jour., v.11, pp.175–183.

    Article  Google Scholar 

  • Lahijani, H., and Tavakoli, V. (2012) Identifying provenance of South Caspian coastal sediments using mineral distribution pattern. Quaternary Internat., v.261, pp.128–137.

    Article  Google Scholar 

  • Lario, J., Spencer, C., Plater, A.J., Zazo, C., Goy, J.L., and Dabrio, C.J. (2002) Particle Size Characterization of Holocene back-barrier sequences from North Atlantic Coast (SW Spain and SE England). Geomorphology, v.42(1), pp.25–42.

    Article  Google Scholar 

  • Mahaney, W.C., and Kalm, V. (2000) Comparative SEM study of oriented till blocks, glacial grains and Devonian sands in Estonia and Latvia. Boreas, v.29, pp.35–51.

    Article  Google Scholar 

  • Mange, M.A., and Maurer, H.F.W. (1992) Heavy Minerals in Color. Chapman and Hall, London, pp.133.

    Book  Google Scholar 

  • Mange, M.A., and Wright, D.T. (2007) Heavy minerals in use. Developments in Sedimentology, v.58, pp.1328.

    Google Scholar 

  • Milliman, J.D., and Syvitski, P.M. (1992) Geomorphic/tectonic control of sediment discharge to the ocean: the importance of small mountainous rivers. Jour. Geol., v.100(5), pp.525–544.

    Article  Google Scholar 

  • Mineral Commodity Summaries (2020) USGS. United States Government Printing Office, Washington.

    Google Scholar 

  • Morton, A.C., and Hallsworth, C.R. (1994) Identifying provenance specific features of detrital heavy mineral assemblages in sandstones. Sediment. Geol., v.90, pp.241–256.

    Article  Google Scholar 

  • Passega, R. (1964) Grain size representation by CM patterns as a geological tool. Journal of Sedimentary Petrology, v.34, pp.830–847.

    Article  Google Scholar 

  • Pecher, A. (1989) The metamorphism in the Central Himalaya. Jour. Metamorp. Geol., v.7, pp.31–41.

    Article  Google Scholar 

  • Rahman, M.A., Biswas, P.K., Zaman, M.N., Miah, M.Y., Hossain, T., and Imamul Huq, S.M. (2012) Characterization of the sand of Brahmaputra river of Bangladesh. Bangladesh Jour. Scientiûc and Industrial Res., v.47, pp.167–172.

    Article  Google Scholar 

  • Rahman, M.A., Pownceby, M.I., Haque, N., Bruckard, W.J., and Zaman, M.N. (2014) Characterization of titanium-rich heavy mineral concentrates from the Brahmaputra River basin, Bangladesh. Trans. Instit. Min. Metall. B, v.123, pp.222–233.

    Google Scholar 

  • Rahman, M.A., Pownceby, M.I., Haque, N., Bruckard, W.J., and Zaman, M.N. (2016) Valuable heavy minerals from the Brahmaputra River sands of Northern Bangladesh. Applied Earth Science (Trans. Inst. Min. Metall. B), v.125(3), pp.174–188.

    Google Scholar 

  • Rahman, M.J.J., Pownceby, M.I., and Rana, M.S. (2020) Occurrence and distribution of valuable heavy minerals in sand deposits of the Jamuna River, Bangladesh. Ore Geol. Rev., 116.

  • Rajib, M., Moniruzzaman, M., and Oguchi, C.T. (2016) Economic minerals in fluvial bar sediment of Jamuna River, Bangladesh: geomorphic inference for prospecting rare earth oxides. Transactions, Japanese Geomorphological Union, v.37(3), pp.363–377.

    Google Scholar 

  • Reyneke, L., and Van Der Westhuizen, W. G. (2001) Characterisation of a heavy mineral-bearing sample from India and the relevance of intrinsic mineralogical features to mineral beneficiation. Minerals Engineering, v.14(12), pp.1589–1600.

    Article  Google Scholar 

  • Shahr El-Din, A.M., Borai, E.H., and Abd El-Ghany, M.S. (2018) Selective separation of thorium from rare earth elements liquor during the alkaline processing of Egyptian monazite concentrate. Main Group Chem, v.17(1), pp.79–88.

    Article  Google Scholar 

  • Singh, S.K., and France-Lanord, C. (2002) Tracing the distribution of erosion in the Brahmaputra watershed from isotopic compositions of stream sediments. Earth Planet. Sci. Lett., v.202, pp.645–662.

    Article  Google Scholar 

  • Uddin, A., and Lundberg, N. (1998) Unroofing history of the eastern Himalaya and the Indo-Burman ranges: heavy-mineral study of Cenozoic sediments from the Bengal Basin, Bangladesh. Jour. Sediment. Res., v.68, pp.465–472.

    Article  Google Scholar 

  • Umitsu, M. (1987) Late Quaternary sedimentary environment and landform evolution in the Bengal lowland. Geographical Rev. Japan, v.60, pp.164–178.

    Google Scholar 

  • Von Eynatten, H., and Dunkl, I. (2012) Assessing the sediment factory: The role of single grain analysis. Earth Sci. Rev., v.115, pp.97–120.

    Article  Google Scholar 

  • Voncken, J.H.L. (2016) The ore minerals and major ore deposits of the rare earths. In: Voncken, J. (ed.): The rare earth elements. Springer International Publishing, pp.15-52.

  • Yokoyama, K., Amano, K., Taira, A., and Satio, Y. (1990) Mineralogy of silts from the Bengal Fan, In: Cochran, J.R., Stow, D.A.V., et al., (eds.), Proceed of the Ocean Drilling Program. Scientific Results, Collede Station, Texas, v.116, pp.59-73.

  • Zaman, M.N., Rahman, M.A., and Biswas, P.K. (2012) Sands of the Brahmaputra River Basin: Identification of Valuable Heavy Minerals (VHM) in the sands of the Brahmaputra river. Lap Lambert Academic Publishing, pp.21-34.

Download references

Acknowledgements

The authors acknowledge the financial support from the University Grant Commission (UGC) of Bangladesh for this research. We express our gratitude to the laboratory technicians of the Department of Geological Sciences, Jahangirnagar University, Bangladesh, for their assistance. We are indebted to Dr. Moyra Wilson, School of Earth Science, University of Western Australia for her assistance in SEM studies and Sandy Lam, Microanalysis Australia, Perth for the SEM-EDS analysis. We thank the editor and anonymous reviewers for their reviews, constructive comments, and suggestions on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md Sakaouth Hossain.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hossain, M.S., Aziz, M.T., Shahriar, M.S. et al. Heavy Mineral Analysis of Jamuna River Sediments, Bangladesh. J Geol Soc India 97, 470–480 (2021). https://doi.org/10.1007/s12594-021-1713-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12594-021-1713-3

Navigation