Skip to main content
Log in

Data-driven Geodynamics

  • Published:
Journal of the Geological Society of India

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Aster, R.C., Borchers, B. and Thurber C.H. (2005) Parameter Estimation and Inverse Problems, International Geophysics Series, v.90, Elsevier, San Diego.

    Book  Google Scholar 

  • Bennett, A.F. (1992) Inverse Methods in Physical Oceanography, Cambridge University Press, Cambridge.

    Book  Google Scholar 

  • Bunge, H.-P., Hagelberg, C.R. and Travis, B.J. (2003) Mantle circulation models with variational data assimilation: Inferring past mantle flow and structure from plate motion histories and seismic tomography. Geophys. Jour. Internat., v.152, pp.280–301.

    Article  Google Scholar 

  • Chen, Q., Oberhänsli, R. and Zhao, M. (2020) A new international initiative for facilitating data-driven Earth science transformation. In: Hill, P.R., Lebel, D., Hitzman, M., Smelror, M., Thorleifson, H. (Eds.) The Changing Role of Geological Surveys. Geological Society, London, Special Publications, v.499, pp.225–240.

    Google Scholar 

  • Conrad, C.P. and Gurnis, M. (2003) Seismic tomography, surface uplift, and the breakup of Gondwanaland: Integrating mantle convection backwards in time. Geochem. Geophys. Geosys., v.4(3), doi:https://doi.org/10.1029/2001GC000299.

  • Drewes, H. (2009) The Actual Plate Kinematic and Crustal Deformation Model APKIM2005 as basis for a non-rotating ITRF. In: Drewes, H. (Ed.) Geodetic Reference Frames. Springer, Berlin, IAG Symposia series, v.134, pp.95–99.

  • Fukao, Y., Widiyantoro, S. and Obayashi, M. (2001) Stagnant slabs in the upper and lower mantle transition region. Rev. Geophys., v.39, pp.291–323.

    Article  Google Scholar 

  • Furumura, T. and Kennett, B.L.N. (2005) Subduction zone guided waves and the heterogeneity structure of the subducted plate — intensity anomalies in northern Japan. Jour. Geophys. Res., v. 110, B10302, doi:https://doi.org/10.1029/2004JB003486

    Article  Google Scholar 

  • Ghelichkhan, S. and Bunge, H-P. (2018) The adjoint equations for thermochemical compressible mantle convection: derivation and verification by twin experiments. Proc. Roy. Soc. A, v. 474, 20180329, doi:https://doi.org/10.1098/rspa.2018.0329

    Article  Google Scholar 

  • Glisovic, P. and Forte, A.M. (2014) Reconstructing the Cenozoic evolution of the mantle: Implications for mantle plume dynamics under the Pacific and Indian plate. Earth Planet. Sci. Lett., v.390, pp.146–156.

    Article  Google Scholar 

  • Glisovic, P. and Forte, A. M. (2016) A new back-and-forth iterative method for time-reversed convection modeling: Implications for the Cenozoic evolution of 3-D structure and dynamics of the mantle. Jour. Geophys. Res., v.121, pp.4067–4084.

    Article  Google Scholar 

  • Glišovic, P. and Forte, A. M. (2017) On the deep-mantle origin of the Deccan Traps. Science, v.355, pp.613–616.

    Article  Google Scholar 

  • Hall, R. (2002) Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific: computer-based reconstructions, model and animations. Jour. Asia Earth Sci., v.20, pp.353–431.

    Article  Google Scholar 

  • Hier-Majumder, C.A., Belanger, E., DeRosier, S., Yuen, D.A. and Vincent, A.P. (2005) Data assimilation for plume models. Nonlin. Processes Geophys., v.12, pp.257–267.

    Article  Google Scholar 

  • Honda, S., Yuen, D. A. Balachandar, S. and Reuteler, D. (1993) Three-dimensional instabilities of mantle convection with multiple phase transitions. Science, v.259, pp.1308–1311.

    Article  Google Scholar 

  • Horbach, A., Bunge, H.-P. and Oeser, J. (2014) The adjoint method in geodynamics: derivation from a general operator formulation and application to the initial condition problem in a high resolution mantle circulation model. Internat. Jour. Geomath., v.5, pp.163–194.

    Article  Google Scholar 

  • ISC (2019) Action Plan 2019–2021, International Science Council, Paris (2019). Available at: https://council.science/actionplan/ (retrieved on 28.12.2020).

    Google Scholar 

  • Ismail-Zadeh, A. and Joselyn, J.A. (2019) IUGG: beginning, establishment, and early development (1919–1939). Hist. Geo Space. Sci., v.10, pp.25–44.

    Article  Google Scholar 

  • Ismail-Zadeh, A. and Tackley, P. (2010) Computational Methods for Geodynamics, Cambridge University Press, Cambridge.

    Book  Google Scholar 

  • Ismail-Zadeh, A., Aoudia, A. and Panza, G.F. (2010) Three-dimensional numerical modeling of contemporary mantle flow and tectonic stress beneath the Central Mediterranean. Tectonophysics, v.482(1–4), pp.226–236.

    Article  Google Scholar 

  • Ismail-Zadeh, A., Honda, S. and Tsepelev, I. (2013) Linking mantle upwelling with the lithosphere descent and the Japan Sea evolution: a hypothesis. Sci. Rep., v.3, 113, doi:https://doi.org/10.1038/srep01137.

    Google Scholar 

  • Ismail-Zadeh, A.T., Korotkii, A.I. and Tsepelev, I.A. (2003a) Numerical approach to solving problems of slow viscous flow backwards in time. In: Bathe, K.J. (Ed.) Computational Fluid and Solid Mechanics. Elsevier, Amsterdam, pp. 938–941.

    Google Scholar 

  • Ismail-Zadeh, A.T., Korotkii, A.I. and Tsepelev, I.A. (2016) Data-Driven Numerical Modelling in Geodynamics: Methods and Applications. Springer, Heidelberg.

    Google Scholar 

  • Ismail-Zadeh, A., Mueller, B. and Schubert, G. (2005) Three-dimensional modeling of present-day tectonic stress beneath the earthquake-prone southeastern Carpathians based on integrated analysis of seismic, heat flow, and gravity observations. Phys. Earth Planet. Inter., v.149, pp.81–98.

    Article  Google Scholar 

  • Ismail-Zadeh, A.T., Talbot, C.J. and Volozh, Y.A. (2001) Dynamic restoration of profiles across diapiric salt structures: numerical approach and its applications. Tectonophysics, v.337, pp.21–36.

    Article  Google Scholar 

  • Ismail-Zadeh, A.T., Korotkii, A.I., Naimark, B.M. and Tsepelev, I.A. (2003b) Three-dimensional numerical simulation of the inverse problem of thermal convection. Comput. Math. & Mathem. Phys., v. 43(4), pp.587–599.

    Google Scholar 

  • Ismail-Zadeh, A., Korotkii, A., Schubert, G. and Tsepelev, I. (2007) Quasireversibility method for data assimilation in models of mantle dynamics. Geophys. Jour. Int., v.170, pp.1381–1398.

    Article  Google Scholar 

  • Ismail-Zadeh, A., Schubert, G., Tsepelev, I. and Korotkii, A. (2004a) Inverse problem of thermal convection: Numerical approach and application to mantle plume restoration. Phys. Earth Planet. Inter., v. 145, pp.99–114

    Article  Google Scholar 

  • Ismail-Zadeh, A., Schubert, G., Tsepelev, I. and Korotkii, A. (2006) Three-dimensional forward and backward numerical modeling of mantle plume evolution: Effects of thermal diffusion. Jour. Geophys. Res., v.111, B06401, doi:https://doi.org/10.1029/2005JB003782.

    Article  Google Scholar 

  • Ismail-Zadeh, A., Schubert, G., Tsepelev, I. and Korotkii, A. (2008) Thermal evolution and geometry of the descending lithosphere beneath the SE-Carpathians: An insight from the past. Earth Planet. Sci. Lett., v.273, pp.68–79.

    Article  Google Scholar 

  • Ismail-Zadeh, A.T., Tsepelev, I.A., Talbot, C.J. and Korotkii, A.I. (2004b) Three-dimensional forward and backward modelling of diapirism: Numerical approach and its applicability to the evolution of salt structures in the Pricaspian basin. Tectonophysics, v.387, pp.81–103.

    Article  Google Scholar 

  • Jolivet, L., Tamaki, K. and Fournier, M. (1994) Japan Sea, opening history and mechanism: A synthesis. J. Geophys. Res., v.99, pp.22232–22259.

    Google Scholar 

  • Kalnay, E. (2003) Atmospheric Modeling, Data Assimilation and Predictability, Cambridge University Press, Cambridge.

    Google Scholar 

  • Kaus, B.J.P. and Podladchikov Y.Y. (2001) Forward and reverse modeling of the three-dimensional viscous Rayleigh-Taylor instability. Geophys. Res. Lett., v.28(6), pp.1095–1098.

    Article  Google Scholar 

  • Korotkii, A., Kovtunov, D., Ismail-Zadeh, A., Tsepelev, I. and Melnik, O. (2016) Quantitative reconstruction of thermal and dynamic characteristics of lava from surface thermal measurements. Geophys. Jour. Int., v.205, pp.1767–1779.

    Article  Google Scholar 

  • Lattes, R. and Lions, J.L. (1969) The Method of Quasi-Reversibility: Applications to Partial Differential Equations. Elsevier, New York.

    Google Scholar 

  • Liu, L. and Gurnis M. (2008) Simultaneous inversion of mantle properties and initial conditions using an adjoint of mantle convection. Jour. Geophys. Res., v. 113, B08405, doi:https://doi.org/10.1029/2008JB005594.

    Article  Google Scholar 

  • Liu, L., Spasojevic, S. and Gurnis, M. (2008) Reconstructing Farallon plate subduction beneath North America back to the Late Cretaceous. Science, v.322, pp.934–938.

    Article  Google Scholar 

  • McLaughlin, D. (2002) An integrated approach to hydrologic data assimilation: Interpolation, smoothing, and forecasting. Adv. Water Res., v.25, pp.1275–1286.

    Article  Google Scholar 

  • Moucha, R. and Forte, A.M. (2011) Changes in African topography driven by mantle convection. Nat. Geosci., v.4, pp.707–712.

    Article  Google Scholar 

  • Naimark, B.M. and Ismail-Zadeh, A.T. (1995) Numerical models of a subsidence mechanism in intracratonic basins: Application to North American basins. Geophys. Jour. Inter., v.123(1), pp.149–160.

    Article  Google Scholar 

  • Naimark, B.M., Ismail-Zadeh, A.T. and Jacoby, W.R. (1998) Numerical approach to problems of gravitational instability of geostructures with advected material boundaries. Geophys. Jour. Inter., v.134(2), pp.473–483.

    Article  Google Scholar 

  • Northrup, C.J., Royden, L.H. and Burchfiel, B.C. (1995) Motion of the Pacific plate relative to Eurasia and its potential relation to Cenozoic extension along the eastern margin of Eurasia. Geology, v.23, pp.719–722.

    Article  Google Scholar 

  • Obayashi, M., Sugioka, H., Yoshimitsu, J. and Fukao, Y. (2006) High temperature anomalies oceanward of subducting slabs at the 410-km discontinuity. Earth Planet. Sci. Lett., v.243, pp.149–158.

    Article  Google Scholar 

  • Oberhänsli, R. (2020) Deep-time Digital Earth (DDE) the First IUGS Big Science Program. Jour. Geol. Soc. India, v.95, pp.223–226.

    Article  Google Scholar 

  • Ratnaswamy, V., Stadler, G. and Gurnis, M. (2015) Adjoint-based estimation of plate coupling in a non-linear mantle flow model: theory and examples. Geophys. Jour. Int., v.202, pp.768–786.

    Article  Google Scholar 

  • Schweitzer, J. and Lay, T. (2019) IASPEI: its origins and the promotion of global seismology. Hist. Geo Space. Sci., v.10, pp.173–180.

    Article  Google Scholar 

  • Seno, T. and Maruyama, S. (1984) Paleogeographic reconstruction and origin of the Philippine Sea. Tectonophysics, v.102, pp.53–84.

    Article  Google Scholar 

  • Steinberger, B., and O’Connell, R.J. (1998) Advection of plumes in mantle flow: implications for hotspot motion, mantle viscosity and plume distribution. Geophys. Jour. Int., v. 132, pp.412–434.

    Article  Google Scholar 

  • Tackley, P. J., Stevenson, D.J., Glatzmaier, G A. and Schubert, G. (1993) Effects of an endothermic phase transition at 670 km depth in a spherical model of convection in the Earth’s mantle. Nature, v.361, pp.699–704.

    Article  Google Scholar 

  • Tarantola, A. (2005) Inverse Problem Theory and Model Parameter Estimation, SIAM, Philadelphia.

    Book  Google Scholar 

  • Turcotte, D. L. and Schubert, G. (2014) Geodynamics, 3rd ed., Cambridge University Press, Cambridge.

    Book  Google Scholar 

  • Worthen, J., Stadler, G., Petra, N., Gurnis, M. and Ghattas, O. (2014) Towards an adjoint-based inversion for rheological parameters in nonlinear viscous mantle flow. Phys. Earth Planet. Int., v.234, pp.23–34.

    Article  Google Scholar 

  • Yamazaki, T., Takahashi, M., Iryu, Y., Sato, T., Oda, M., Takayanagi, H. et al. (2010) Philippine Sea Plate motion since the Eocene estimated from paleomagnetism of seafloor drill cores and gravity cores. Earth Planets Space, v.62, pp.495–502.

    Article  Google Scholar 

Download references

Acknowledgements

Special thanks go to Satoru Honda, Alexander Korotkii, Gerald Schubert, and Igor Tsepelev for their invaluable contribution to the research on data assimilation in geodynamics presented in this paper. The German Science Foundation and the Russian Science Foundation are thanked for a support of the research related to data-driven modelling in geodynamics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alik Ismail-Zadeh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ismail-Zadeh, A. Data-driven Geodynamics. J Geol Soc India 97, 223–226 (2021). https://doi.org/10.1007/s12594-021-1670-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12594-021-1670-x

Navigation