Skip to main content

Advertisement

Log in

The Deccan Volcanic Province (DVP), India: A Review

Part 2: Geochemistry, petrological evolution, petrogenesis, mantle sources, age and erupted volume relations, Upper Cretaceous-Palaeogene (K-Pg) mass extinctions, economic aspects, summary and future studies in DVP

  • Review Article
  • Published:
Journal of the Geological Society of India

Abstract

Geochemical data (major and minor oxides, trace elements including REE, and Sr, Nd, Pb, and O isotopes) have been obtained on a number of flow sequences and plutonic and volcanic complexes of the DVP by numerous groups since the early 1970’s. Evaluation of these data has led to the classification of the basalts and other rock types, inferences on their mantle sources, parental magmas and the numerous magmatic differentiation and crustal contamination processes that have caused the observed diversity. The DVP is predominantly composed of quartz- and hypersthenenormative tholeiitic basalts in the plateau regions (Western Ghats and adjoining central and eastern parts (Malwa and Mandla)). However, along the ENE-WSW-trending Narmada-Tapi rift zones, the N-S to NNW-SSE-trending Western coastal tract, the Cambay rift zone, and the Saurashtra peninsula and Kutch regions, the DVP shows considerable diversity in terms of structures, presence of dyke swarms and dyke clusters, and intrusive and extrusive centres with diverse rock types.

Based on the geochemical and isotopic variations observed in the twelve different formations of basalts from the Western Ghats, it has been established that the least contaminated basalts among the Deccan Basalt Group lavas are represented by the Ambenali Formation of the Wai sub-group (c. 500 m thick), with εNd(t) = +8 to + 2, (87Sr/86Sr)t = 0.7040–0.7044 and (206Pb/204Pb)0 = 18.0 ± 0.5, average Ba/Zr = 0.3, and Zr/Nb = 14.4, indicating a depleted T-MORB-like mantle source. Slight enrichment in (87Sr/86Sr)t ratios (0.705), and εNd(t) = (+5 to −5) and depletion in (206Pb/204Pb)0 = 18.5–17.0 and δ18O = +6.2 to +8.3 ‰ as observed in the Mahabaleshwar Formation, that overlies the Ambenali Formation, indicate an enriched or metasomatised lithospheric mantle source. Such uncontaminated magmas appear to have been variably contaminated by a variety of crustal rocks (gneisses, shales, schists, amphibolites and granulites) as indicated in the εNd(t) vs. (87Sr/86Sr)t plots of all other eight formations that underlie these two formations. The flows of the Bushe Formation from the Western Ghats and one dyke from the Tapi rift zone represent the most crustally contaminated rock types with εNd(t) = −10 to −20.2 and (87Sr/86Sr)t = 0.713–0.72315 and very high (208Pb/204Pb)0 = 41.4, (207Pb/204Pb)0 = 16.03 and (206Pb/204Pb)0 = 20.93. Combined Sr-Nd-Pb, TiO2, MgO, Zr/Y and primitive mantle — normalised plots of basalts from flow sequences that are far away (c. 400–700 km) from the Western Ghats (e.g. Toranmal, Mhow, Chikaldara, Jabalpur and others) indicate their chemical similarity to those of the Western Ghats, especially Poladpur and Ambenali formations, except for some differences in the Pb-isotope ratios. Such features suggest either lithological continuity of flows over long distances from a single eruptive source or their coeval eruption from multiple sources providing basalts of analogous geochemistry. The DVP provides a plethora of crustal contamination processes such as assimilation and quasi- equilibrium crystallization (AEC) in the MgO-rich samples of the Western Ghats (e.g. Bushe) during emplacement or ascent, and assimilation- fractionation crystallisation (AFC-type) in intrusive and/or volcanic complexes (e.g., Phenai Mata, Pavagadh, Mumbai Island) in crustal magma chambers of the refilled, tapped and fractionated (RTF)- type. Operation of such RTF-magma chamber processes within the Mahabaleshwar sequence (c. 1200 m) indicates the complexities introduced in the magmatic process and hence in geochemical interpretations of such thick flow sequences.

High- and low-pressure experimental petrological studies have led to petrogenetic models which indicate the production of primary melts of picritic compositions (c. 16% MgO), by 15–30% melting of an Fe-rich lherzolitic source at c. 2–3 GPa (c. 60–100 km depths). These melts evolved through olivine-fractionation near the Moho and then gabbroic fractionation within the shallow-intermediate crust (c. 6 km below the surface under c. 2 kb pressure) to produce the most dominant quartz- and hypersthene-normative tholeiitic basalts. In some rare cases (e.g., borehole sequence of Saurashtra, Pavagadh and others), the primary picritic liquids that formed at mantle depths, and the spinel-peridotie mantle-nodule- hosting melanephelinites from Kutch, have erupted without much modification. They occur spatially in close proximity to deep faults or rifts (e.g Narmada, Cambay, Kutch and others) which have apparently facilitated their rapid ascent and eruption without significant pause or modification during transport. εNd(t) vs. (87Sr/86Sr)t, chondrite- and primitive-mantle normalized variations in the picritic rocks and basalts of the DVP indicate several types of mantle sources such as transitional-midocean-ridge basalt (T-MORB), Ocean Island basalt (OIB)/Reunion- type of peridotitic compositions either metasomatised or normal.

Geodynamic and plate-tectonic considerations during the emplacement of the DVP envisage both an asthenospheric- plume source (Reunion) and continental rift-related volcanism with eclogitic sources. The role of dual sources, capable of producing large volumes of basalts through near-total melting seem to provide the answer to DVP’s enigma of production of large volumes of lava in very short time as observed in the Western Ghats and the contiguous plateau, and also the extreme diversity in rock types found in the western parts from peridotitic-sources.

Age data based on Ar-Ar, U-Pb, Re-Os isotopes, constrained by paleomagnetic data for the whole of DVP conforming to C30N-C29R-29N, indicate a protracted period of volcanism from 69.5 Ma (Upper Cretaceous) to 62 Ma (Palaeocene) including polychronous complexes (e.g. Mundwara, Sarnu-Dandali, Rajasthan). Based on precise U-Pb age data on zircons, it has been shown that the whole sequence of the Western Ghats with ten formations (c.1.8 km thick) erupted over a short period of time (< 1 Ma). The most dominant volcanic phase, however, represented by the Wai Subgroup, consisting of the Poladpur, Ambenali and Mahabaleshwar formations (c. 1.1 km thick) contain an estimated volume of c. 439,000 km3 of lavas that erupted over a short span of c. 700, 000 years. The precise timing of such large eruptions with reference to the Cretaceous-Palaeogene (K-Pg) boundary with or without links to the Chicxulub meteorite impact are being debated vigorously. In addition, the quantity of gases released (Cl, F, CO2, SO2 and others) during such large eruptions of the DVP and their influence on the mass extinctions of biota including the dinosaurs appear to be closely linked.

Economic aspects of the DVP include deposits of hydrothermal fluorite and REE, Y, Nb, Ba and Sr mineralisatiom (e.g. Amba Dongar) and REE (e.g. Kamthai). Residual laterite and bauxite and fertile soils (e.g., Maharashtra, Madhya Pradesh and Gujarat) support the Al- industry and a robust agrarian sector. The DVP has also been a rich source for building materials. Indications for possible resources of native copper, PGE’s and micro-diamonds have also been indicated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alexander, P.O. (1979) Rare earth element in Dhandhuka bore hole suite, Deccan basalts, Western India. Jour. Geol. Soc. India, v.20, pp.73–82.

    Google Scholar 

  • Alexander, P.O. (1981) Age and duration of Deccan volcanism. Mem. Geol. Soc. India, No.10, pp.244–258.

  • Alexander, P.O. and Thomas, H. (2011) Copper in Deccan basalts (India): review of the abundancesand patterns of distribution. Bull. del. Inst. Fisiographia Geologia, v.79–81, pp.107–112.

    Google Scholar 

  • Alwarez, L.W., Alwarez, W., Asaro, F and Michel, H.V. (1980) Extra-terrestrial cause for the Cretaceous-Tertiary extinctions. Science, v.208, pp.1095–1108.

    Google Scholar 

  • Anderson, D. L. (2005) Large igneous provinces, delamination, and fertile mantle. Elements, v 1(5), pp.271–275.

    Google Scholar 

  • Arndt, N., Chauvel, C., Czamanske, G., and Fedorenko, V. (1998) Two mantle sources, two plumbing systems: tholeiitic and alkaline magmatism of the Maymecha River basin, Siberian flood volcanic province. Contrib. Mineral. Petrol., v.133, pp.297–313. doi:https://doi.org/10.1007/s004100050453.

    Google Scholar 

  • Baksi, A.K., Byerly, G.R., Chan, L.-H. and Farrar, E. (1994) Intracanyon flows in the Deccan province, India? Case history of the Rajahmundry Traps. Geology, v.22, p. 605–608.

    Google Scholar 

  • Basu, A.R., Renne, P.R., Dasgupta, D.K., Teichmann, F. and Poreda, R.J. (1993) Early and Late alkali igneous pulses and a high He plume origin for the Deccan flood basalts. Science, v.261, pp.902–906.

    Google Scholar 

  • Beane, J.E. (1988) Flow stratigraphy, Chemical variations and Petrogenesis of Deccan flood basalts from the Western Ghats, India. Ph.D Dissertation, Washinton State University, USA.

    Google Scholar 

  • Beane, J.E. and Hooper, P. R. (1988) A note on picrite basalts of the Western Ghats, Deccan Traps, India. Mem. Geol. Soc. India, No.10, pp.117–134.

    Google Scholar 

  • Beane, J.E., Turner, C.A., Hooper, P.R., Subbarao, K.V., and Walsh, J.N. (1986) Stratigraphy, composition and form of the Deccan basalts, Western Ghats, India. Bull. Volcanol., v.48, pp.61–83.

    Google Scholar 

  • Bhandari, N., Shukla, P. N., Ghevariya, Z.G., and Sundaram, S. M. (1996) K/T boundary layer in Deccan inter- trappeans at Anjar, Kutch. Geol. Soc. Amer. Spec. Paper No. 307, pp.417–424.

  • Bhattacharji, S., Chatterjee, J.M., Wampler, J., Nayak, P.N. and Deshmukh, S.S. (1996) Indian intraplate and continental margin rifting, lithospheric extension, and mantle upwelling in Deccan flood basalt volcanism near the K/T boundary: Evidence from mafic dike swarms. Jour. Geol., v.104, pp.379–398.

    Google Scholar 

  • Bhushan, S.K. and Kumar, A. (2013) First carbonatite-hosted REE — deposit from India. Jour. Geol. Soc. India, v.81, pp.41–60.

    Google Scholar 

  • Bondre, N.R., Harte, W.K., and Sheth, H.C. (2006) Geology and geochemistry of the Sangamner mafic dyke swarm, Western Deccan volcanic province, India: implications for regional stratigraphy. Jour. Geology, v.114, pp. 155–170.

    Google Scholar 

  • Borges, M.R., Sen, G., Hart, G.L., Wolff, J.A. and Chandrasekharam, D. (2014) Plagioclase as recorder of magma chamber processes in the Deccan Traps: Sr-isotope zoning and implications for Deccan eruptive event, in: Sheth, H.C. and Vanderkluysen, L. (Eds.), Flood Basalts of Asia. Jour. Asian Earth Sci., v.84, pp.95–101.

  • Bose, M.K. (1980) Alkaline magmatism in the Deccan Volcanic Province. Jour. Geol. Soc. India, v.21, pp. 317–329.

    Google Scholar 

  • Campbell, I.H. (2005) Large igneous provinces and the mantle plume hypothesis. Elements, v.1, pp.265–269.

    Google Scholar 

  • Cawthorn, R.G. (1996) Layered Intrusions. Developments in Petrology, Vol. 15. Elsevier, Amsterdam (in the USA Elsevier Science Inc., New York. 544 p.

    Google Scholar 

  • Chalapathi Rao, N. V. and Srivastava, R. K. (2012) Kimberlites, Lamproites, Lamprophyres, their Entrained Xenoliths, Mafic Dykes and Dyke Swarms: Highlights of Recent Indian Research. Proc. Indian Nat. Sci. Acad. v. 78, pp. 431–444.

    Google Scholar 

  • Chandra, J., Paul, D., Viladkar, S.G. and Sen Sarma, S. (2017) Origin of the Amba Dongar carbonatite complex, India and its possible linkage with the Deccan Large Igneous Province. In: S. Sensarma and B.C. Storey (Eds.), Large Igneous Provinces from Gondwana and Adjacent Regions. Geol. Soc. London, Spec. Publ., No.463, pp.137–169.

  • Chandrasekharam, D., Mahoney, J. J., Sheth, H. C., Duncan, R. A. (1999) Elemental and Nd-Sr-Pb isotope geochemistry of flows and dikes from the Tapi rift, Deccan flood basalt province, India. In: Verma, S.P. (Ed.), Rift-related Volcanism: Geology, Geochemistry, Geophysics. Jour. Volcanol. Geotherm. Res., v.93, pp.111–123.

  • Chandrasekharam, D., Vaselli, O., Sheth, H. C., Keshav, S. (2000) Petrogenetic significance of ferro-enstatite orthopyroxene in basaltic dikes from the Tapi rift, Deccan flood basalt province, India. Earth Planet. Sci. Lett., v.179, pp.469–476.

    Google Scholar 

  • Chatterjee, N. and Bhattacharji, S. (2001) Origin of the Felsic and Basaltic Dikes and Flows in the Rajula-Palitana-Sihor Area of the Deccan Traps, Saurashtra, India: A Geochemical and Geochronological Study. Internat. Geol. Rev., v.43, pp.1094–1116.

    Google Scholar 

  • Chatterjee, N. and Bhattacharji, S., (2008) Trace element variations in Deccan basalts: roles of mantle melting, fractional crystallization and crustal assimilation. Jour. Geol. Soc. India, v.71, pp.171–188.

    Google Scholar 

  • Chatterjee, N. and Sheth, H.C. (2015) Origin of the Powai ankaramite, and the composition, P-T conditions of equilibration and evolution of the primary magmas of the Deccan tholeiites. Contrib. Mineral. Petrol., v.169, pp.32, DOI https://doi.org/10.1007/s00410-015-1125-8

    Google Scholar 

  • Chenet, A.L., Quidelleur, X., Fluteau, F. and Courtillot, V. (2007) 40K-40Ar dating of the main Deccan large igneous province: Further evidence of KTB age and short duration, Earth Planet. Sci. Lett., v.263, pp.1–15. doi:https://doi.org/10.1016/j.epsl.2007.07.011

    Google Scholar 

  • Chenet, A.-L., Fluteau, F., Courtillot, V., Ge’rard, M. and Subbarao, K.V. (2008) Determination of rapid Deccan eruptions across the Cretaceous-Tertiary boundary using paleomagnetic secular variation: Results from a 1200-m-thick section in the Mahabaleshwar escarpment. Jour. Geophys. Res., v.113, B04101, doi:https://doi.org/10.1029/2006JB004635.

    Google Scholar 

  • Chenet, A.L., Vincent Courtillot, V., Fluteau, F., Ge’rard, M., Xavier Quidelleur, X., Khadri, S.F.R., Subbarao, K.V., and Thordarson, T. (2009) Determination of rapid Deccan eruptions across the Cretaceous-Tertiary boundary using paleomagnetic secular variation: 2. Constraints from analysis of eight new sections and synthesis for a 3500-m-thick composite section. Jour. Geophys. Res., v.114, pp. B06103, doi:https://doi.org/10.1029/2008JB005644.

    Google Scholar 

  • Choudhary, B.R. and Jadhav, G.N. (2014) Petrogenesis of fractionated basaltic lava flows of Poladpur-Mahabaleshwar formation around Mahabaleshwar, Western Ghats, India. Jour. Geol. Soc. India, v.84, pp.197–208.

    Google Scholar 

  • Cohen, T.H. and Sen, G. (1994) Fractionation and ascent of Deccan Trap magmas: an experimental study at 6 kilobar pressure. In: K.V. Subbarao (Ed.), Volcanism. Wiley Eastern Ltd., New Delhi, pp.173–186.

    Google Scholar 

  • Courtillot, V., Ferand, G., Maluski, H., Vandamme, D., Moreau, M.G. and Besse, J. (1986) Deccan basalts and the Cretaceous-Tertiary boundary. Nature, v.333, pp.843–846.

    Google Scholar 

  • Cox, K.G. (1972) The Karroo volcanic cycle. Jour. Geol. London. v.128, pp.31–336.

    Google Scholar 

  • Cox, K. G. (1980). A model for flood basalt volcanism. Jour. Petrol., v.21, pp. 629–650.

    Google Scholar 

  • Cox, K. G. (1988) Numerical Modelling of a Randomized RTF Magma Chamber: A Comparison with Continental Flood Basalt Sequences. Jour. Petrol., v.29, pp.681–697

    Google Scholar 

  • Cox, K.G. and Hawkesworth, C.J. (1984) Relative contributions of crust and mantle to flood basalt magmatism, Mahabaleshwar area, Deccan Traps. Phil. Trans. Royal Soc. London, A310, pp.627–641.

    Google Scholar 

  • Cox, K.G. and Hawkesworth, C.J. (1985) Geochemical stratigraphy of the Deccan traps at Mahabaleshwar, Western Ghats, India, with implications for open system magma chamber processes. Jour. Petrol., v.26, pp.355–372.

    Google Scholar 

  • Cox, K.G. and Mitchell, C. (1988) Importance of crystal settling in the differentiation of Deccan Trap basaltic magmas. Nature, v.333, pp.447–449.

    Google Scholar 

  • Crookshank, H. (1936) Geology of the northern slopes of the Satpuras between the Morand and Sher rivers. Mem. Geol. Surv. India, v.66, pp.173–381.

    Google Scholar 

  • Cucciniello, C., Choudhary, A.K., Zanetti, A., Sheth, H.C., Vichare, S. and Pereira, R. (2014) Mineralogy, geochemistry and petrogenesis of the Khopoli mafic intrusion, Deccan Traps, India. Mineral. Petrol., v.108, pp.333–351.

    Google Scholar 

  • Cucciniello, C., Demonterova, E.I., Sheth, H., Pande, K. and Vijayan, A. (2015) 40Ar/39Ar geochronology and geochemistry of the Central Saurashtra mafic dyke swarm: insights into magmatic evolution, magma transport, and dyke-flow relationships in the north western Deccan Traps. Bull Volcanol., v.77, pp.45–63.

    Google Scholar 

  • Cucciniello, C., Choudhary, A.K., Pande, K. and Sheth, H.C. (2019) Mineralogy, geochemistry and 40Ar-39Argeochronology of the Barda and Alech complexes, Saurashtra, northwestern Deccan Traps: early silicic magmas derived by flood basalt fractionation. Geol. Magz., v.156, pp.1668–1690.

    Google Scholar 

  • DePaolo, D.J. (1981) Trace element and isotopic effects of combined wallrock assimilation and fractional crystallization. Earth Planet. Sci. Lett., v.53, pp.189–202.

    Google Scholar 

  • Deshmukh, S.S. (1984) Petrography and petrochemistry of Deccan basalts in Maharashtra. Geol. Surv. India Spec. Publ., No.12, pp.57–76.

    Google Scholar 

  • Deshmukh, S.S., Aramaki, S., Shimizu, N., Kurasawa, N., and Konda, T. (1977) Petrography of the basalt flows along Mahabaleshwar and Amboli sections in Western Ghats, India. Rec. Geol. Surv. India, v.108(2), pp.81–103.

    Google Scholar 

  • Deshmukh, S.S. and Nair, K.K.K. (Eds.) (1996) Deccan Basalts. Special Volume 2, Gondwana Geological Society, Nagpur, 543p.

    Google Scholar 

  • Deshmukh, S.S., Sano, T., Fuji, T., Nair, K.K.K., Yedekar, D.B., Umino, S., Iwamori, H., and Aramaki, S. (1996) Chemical stratigraphy and geochemistry of the basalt flows from the Central and Eastern parts of the Deccan volcanic province of India. In: Deccan Basalts. Special volume, 2, Gondwana Geological Society, Nagpur, pp.145–170.

    Google Scholar 

  • Dessai, A.G., Knight, K. and Vaselli, O. (1999) Thermal Structure of the Lithosphere beneath the Deccan Trap along the Western Indian Continental Margin: Evidence from Xenolith Data. Jour. Geol. Soc. India, v.54, pp.585–598.

    Google Scholar 

  • Dessai, A.G., Downes, H., Lopez-Moro, F.J. and Lopez-Plaza, M. (2008) Lower crustal contamination of Deccan Traps magmas: evidence from tholeiitic dykes and granulite xenoliths from western India. Mineral. Petrol., v.93, pp.243–272.

    Google Scholar 

  • Devey, C.W. and Cox, K.G. (1987) Relationship between crustal contamination and crystallisation in continental flood basalt magmas with special reference to the Deccan Traps of the Western Ghats, India. Earth Planet, Sci. Lett., v.84, pp.59–68.

    Google Scholar 

  • Devy, C.W., and Lightfoot, P.C. (1986) Volcanological and tectonic control of stratigraphy and structure in the western Deccan traps. Bull. Volcanol., v.48, pp.195–207.

    Google Scholar 

  • Duncan, R.A. and Pyle, D.G. (1988) Rapid eruption of the Deccan flood basalts at the Cretaceous/Tertiary boundary. Nature, v.333, pp.841–843.

    Google Scholar 

  • Duraiswami, R.A. and Krishnamurthy, P. (2019). Platinum group elements potential from the Western Ghats, Deccan volcanic province, Maharashtra. Project submitted to DST.

  • Eddy, M.P., Schoene, B., Kyle M. Samperton, K.M., Keller, G., Adatte, T. and Khadri, S.F.R. (2020). U-Pb zircon age constraints on the earliest eruptions of the Deccan Large Igneous Province, Malwa Plateau, India. Earth. Planet. Sci. Lett., v.540, pp.116249. doi:https://doi.org/10.1016/j.epsl.2020.116249

    Google Scholar 

  • Fitton, J.G. (2007) The OIB paradox. In: Foulger, G.R. and Jurdy, D.M. (Eds.), Plates, Plumes, and Planetary Processes. Geol. Soc. Amer. Spec. Papers, v.430, pp.387–412.

  • Font, E., Adatte, T., Sial, A.N., Lacerda, L.D., Keller, G. and Punekar, J. (2016) Mercury anomaly, Deccan volcanism, and the end-Cretaceous mass extinction. Geology, published online, doi:https://doi.org/10.1130/G37451.1

  • Gangopadhyay, A., Sen, G. and Keshav, S. (2003) Experimental crystallisation of Deccan basalts at low pressure: effect of contamination on phase-equilibrium. Indian Jour., Geol., v.75, pp.54–71.

    Google Scholar 

  • GEOROC: Geochemistry of Rocks of the Oceans and Continents. http://georoc.mpch-mainz.gwdg.de/georoc/

  • Ghosh, B. (2011) Giant Plagioclase Basalt from Northern Part of Jhabua District, Madhya Pradesh, Central India, pp.181–189. In: J. Ray et al. (Eds.), Topics in Igneous Petrology, Springer Science Business Media B.V.

  • Glišoviæ, P. and Forte, A.M. (2017) On the deep-mantle origin of the Deccan Traps. Science, v.355, pp.613–616. doi:https://doi.org/10.1126/science.aah4390

    Google Scholar 

  • Green, D.H. and Ringwood, A.E. (1967) The genesis of basaltic magmas. Contrib. Mineral. Petrol., v.15, pp.103–190.

    Google Scholar 

  • Greenough. J.D., Hari, K.R., Chatterjee., and Santhos, M. (1998). Mildly alkaline basalts from Pavagad Hill, India: Deccan flood basalt with an asthenosphere origin. Mineral. Petrol., v.62, pp.223–245.

    Google Scholar 

  • Hari, K.R. and Randive, K.R. (2017) Mixing and mingling of dissimilar magmas as against extreme differentiation of tholeiitic magmas: A new insight on the petrogenesis of Phenai Mata Igneous Complex, Deccan Large Igneous Province, India. Indian Jour. Geosci., v.71, pp.547–562.

    Google Scholar 

  • Hartnady, C.J.H. (1986) Amarante basin, Western Indian Ocean: possible impact site of the Cretaceous-Tertiary Extinction bolide?. Geology, v.14, pp.423–426.

    Google Scholar 

  • Heimda, T. H., Svensen, S.H., Ramezan, J., Iyer, K., Pereira, E., Rodrigues, R., Jones, M.T. and Callegaro, S. (2018) Large-scale sill emplacement in Brazil as a trigger for the end-Triassic crisis. Scientific Reports, v.8, Article number: 141

  • Herzberg, C. and O’Hara, M.J. (1998) Phase equilibrium constraints on the origin of basalts, picrites and komatiites. Earth Sci. Rev., v.44, pp.39–79.

    Google Scholar 

  • Herzberg, C., and Gazel, E. (2009) Petrological evidence for secular cooling in mantle plumes. Nature, v.458(7238), pp.619

    Google Scholar 

  • Hofmann, C., Feroud, G. and Courtillot, V. (2000). 40Ar/39Ar dating of mineral separates and whole rocks from the Western Ghats lava pile; further constraints on duration and age of the Deccan traps. Earth Planet. Sci. Lett., v.180, pp.13–27.

    Google Scholar 

  • Hooper, P.R. (1990) The timing of crustal extension and the eruption of continental flood basalts. Nature, v.345, pp.246–249.

    Google Scholar 

  • Hooper, P.R. (1994) Sources of continental flood basalts: the lithospheric component. In: K.V. Subbarao (Ed.), Volcanism, Wiley Eastern Ltd., pp.29–53.

  • Hooper, P. R., Widdowson, M., and Kelley, S. (2010).Tectonic setting and timing of the final Deccan Flood Basalt eruptions. Geology, v.38, pp.839–842.

    Google Scholar 

  • Huppert, H.E., and Sparks, R.S.J. (1980) The fluid dynamics of a magma basaltic chamber replenished by influx of hot dense ultrabasic magma. Contrib. Mineral. Petrol., v.75, pp.279–289.

    Google Scholar 

  • IBM, (2006) Unpublished Records, Regional Office, Indian Bureau of Mines Udaipur, Rajasthan.

  • Irvine, T.N. and Baragar, W.R.A. (1971) A guide to the chemical classification of the common rocks. Canadian Jour. Earth Sci., v.8, pp.523–548.

    Google Scholar 

  • Jay, A.E., and Widdowson, M. (2008) Stratigraphy, structure and volcanology of the SE Deccan continental flood basalt province: implications for eruptive extent and volumes. Jour. Geol. Soc. London, v.165, pp.177–188.

    Google Scholar 

  • Kale, V.S., Bodas, M., Chatterjee, P. and Kanchan Pande (2020) Emplacement history and evolution of the Deccan Volcanic Province, India. Episodes, v.43, pp.278–298.

    Google Scholar 

  • Kaneoka, I., Iwata, N., Nagan, K., and Deshmukh, S.S. (1996). Period of volcanic activity of the Deccan Plateau inferred from K-Ar and 40Ar-39Ar ages and the problems related to radiometric dating. In: Deshmukh, S.S and Nair, K.K.K. (Eds.), Deccan Basalts, Special. Volume 2, Gondwana Geological Society, Nagpur, pp. 311–319.

    Google Scholar 

  • Karmarkar, B.M., Kulkarni, S.R., Marathe, S.S., Sowani, P.V., and Peshwa, V.V. (1971) Giant Phenocryst Basalts in the Deccan Trap. Bull. Volcanol., v.35(4), pp.965–974

    Google Scholar 

  • Karmalkar, N.R., Duraiswami, R.A., Griffin, W.L. and O’Reilly, S.Y. (1999) Engmatic orthopyroxene-rutile-spinel intergrowth in the mantle xenoliths from Kutch, India. Curr. Sci., v.76, pp.687–692.

    Google Scholar 

  • Karmalkar, N.R., Rege, S., Griffin, W.L. and O’Reilley, S.Y. (2005) Alkaline magmatism from Kutch, NW India: implications for plume-lithosphere interaction. Lithos, v.81, pp.101–119.

    Google Scholar 

  • Karmalkar, N.R., Duraiswami, R.A., Sarma, P.K., Chauhan, S.P., and Jonnalgadda, M.K. (2007) Peeping into the interior of the western continental margin of India: a xenolith-based perspective. In: Leelanandham, C., Rama Prasada Rao., Ch. Sivaji and Santosh, M. (Eds.), The Indian continental crust and upper mantle. (T.M. Mahadevan Volume), IAGR Memoir No.10, pp.145–156.

  • Karmalkar, N.R., Duraiswami, R.A., Chalapathi Rao, N.V. and Paul, D.K. (2009) Mantle-derived mafic-ultramafic xenoliths and the nature of Indian Sub-continental Lithosphere Jour. Geol. Soc. India, v.73, pp.657–679.

    Google Scholar 

  • Karmalkar, N.R., Duraiswamy, R.A., Jonnalgadda, M.K., Griffin, W.L., Gregoire, M., Benoit, M., and Delpech, G. (2016) Magma types and source characterization of the earlyDeccan magmatism, Kutch Region, NW India: insights from geochemistry of igneous intrusions. In: Mahesh G. Thakkar (Ed.), Recent Studies on the Geology of Kachchh. Geol. Soc. India, Spec. Publ., no.6, pp.195–210.

  • Kelley, G. (2007) The geochronology of large igneous provinces, terrestrial impacts craters and their relationship to mass extinctions on earth. Jour. Geol. Soc. London, v.164, pp.923–936.

    Google Scholar 

  • Keller, G., Adatte, T., Gardin, S., Bartolini, A., and Bajpai, S. (2008). Main Deccan volcanism phase ends near the K-T boundary: Evidence from the Krishna-Godavari Basin, SE India. Earth Planet. Sci. Lett., v.268, pp.293–311.

    Google Scholar 

  • Keller, G., Sahni, A. and Bajpai, S. (2009) Deccan volcanism, the KT mass extinction and dinosaurs. Jour. Biosci., v.34, pp.709–728.

    Google Scholar 

  • Keller, G., Adatte, T., Bhowmick, P.K., Upadhyay, H., Dave, A., Reddy, A.N. and Jaiprakash, B.C. (2012) Nature and timing of extinctions in Cretaceous-Tertiary planktic foraminifera preserved in Deccan intertrappean sediments of the Krishna-Godavari Basin, India. Earth Planet. Sci. Lett., v.341–344, pp.211–221.

    Google Scholar 

  • Keshav, S. and Gudfinnsson, G.H. (2004) Silica-poor, mafic alkaline lavas from ocean islands and continents: Petrogenetic constraints from major elements. Proc. Indian Acad. Sci. (Earth Planet. Sci), v.113, pp.723–736.

    Google Scholar 

  • Khadri, S.F.R., Walsh, J.N., and Subbarao, K. V. (1999) Chemical and magnetostratigraphy of Malwa Traps around Mograba region, Dhar district, MP., pp. 203–218. Mem. Geol. Soc. India, No.43, pp.203–218.

    Google Scholar 

  • Krishnamurthy, P. (1974) Petrological and chemical studies of Deccan Trap lavas from Western India. Unpublished Ph.D thesis, University of Edinburgh, 129p.

  • Krishnamurthy, P. (1976) Atmospheric pressure melting studies of some Deccan Trap lavas from Western India. In: Progress in Experimental Petrology, Third Progress Report of Research, The National Env. Res. Council, Pub. Ser., No.6, pp.218–220.

    Google Scholar 

  • Krishnamurthy, P. (2000) Evolution of Deccan basalts. In: Harsh K. Gupta, Alok Parasher Sen, and D. Balasubramanian (Eds.), Deccan Heritage. Indian Sci. Acad., University Press, Hyderabad, pp.77–95.

  • Krishnamurthy, P. (2007) Basalts and carbonatites: some petrological perspectives and integrated studies in the 21st century, In: Jyothisankar Ray and Bhattacharya, C. (Eds.), Igneous Petrology in the 21st Century Perspective. Allied Pub. Pvt., Ltd., New Delhi, pp.165–181.

    Google Scholar 

  • Krishnamurthy, P. (2008) Cretaceous continental flood basalt magmatism in India. In: T. Radhakrishna, M. Ramakrishnan and Narayanaswamy (Eds.), Mem. Geol. Soc. India, No.74, pp.261–297.

  • Krishnamurthy, P. (2015) Chalcophile element depletion in lower Deccan trap formations and implications for Cu-Ni-PGE sulphide mineralization in the Deccan Traps, India akin to those of NorilsK-Pgalnakh, Siberian traps, Russia. Jour. Geol. Soc. India, v.85, pp.411–418.

    Google Scholar 

  • Krishnamurthy, P. (2019) Carbonatites of India. Jour. Geol. Soc. India, v.94, pp.117–138.

    Google Scholar 

  • Krishamurthy, P. (2020). The Deccan Volcanic Province (DVP), India: A Review. Part 1: Areal extent and distribution, compositional diversity, flow types and sequences, stratigraphic correlations, dyke swarms and sills, petrography and mineralogy. Jour. Geol. Soc. India, v.96, pp.9–35.

    Google Scholar 

  • Krishnamurthy, P. and Cox, K.G. (1977) Picrite basalts and related lavas from the Deccan Traps of Western India. Contib. Mineral. Petrol., v.62, pp.53–75.

    Google Scholar 

  • Krishnamurthy, P. and Cox, K.G., (1980) A potassium-rich alkalic suite from the Deccan Traps, Rajpipla, India. Contib. Mineral. Petrol., v.73(2), pp.179–189.

    Google Scholar 

  • Krishnamurthy, P. and Udas, G.R. (1981) Regional geochemical characters of the Deccan Trap lavas and their genetic implications. In: K.V. Subbarao, R.N.Sukheswala (Eds.), Deccan Trap Volcanism. Mem. Geol. Soc. India, No.3, p. 394–418.

  • Krishnamurthy, P., Pande, K., Gopalan, K. and Macdougall, J.D. (1988) Upper mantle xenoliths in alkali basalts related to Deccan Trap Volcanism, In: K.V.Subbarao, (Ed.), Deccan Flood Basalts. Mem. Geol. Soc. India, No.10, pp.53–67.

  • Krishnamurthy, P., Pande, K., Gopalan, K. and Macdougall, J.D. (1999) Mineralogical and chemical studies on alkaline basaltic rocksof Kutch, Gujarat India. In: K.V.Subbarao, (Ed.), Deccan Volcanic Province, Mem. Geol. Soc. India, No.43(2), pp.757–783.

  • Krishnamurthy, P., Gopalan, K., and Macdougall, J.D. (2000) Olivine compositions in picrate basalts and the Deccan volcanic cycle. Jour. Petrol, v.41, pp.1057–1067.

    Google Scholar 

  • Kshirsagar, P.V., Sheth, H.C., Shaikh, B. (2011) Mafic alkalic magmatism in central Kachchh, India: A monogenetic volcanic field in the northwestern Deccan Traps. Bull. Volcanol., v.73, pp.595–612

    Google Scholar 

  • Kshirsagar, P. V., Sheth, H.C., Seaman, S.J., Shaikh, B., Mohite, P., Gurav, T., Chandrasekharam, D. (2012) Spherulites and thundereggs from pitchstones of the Deccan Traps: Geology, petrochemistry, and emplacement environments. Bull. Volcanol., v.74, pp.559–577.

    Google Scholar 

  • Kuno, H. (1968) Differentiation of basaltic magmas. In: Hess, H.H. and Poldervaart, A. (Eds.), Basalts, Wiley Intersci., New York, v.II., pp.623–688.

    Google Scholar 

  • Lehmann, B., Burgess, R., Frei, D., Belyatsky, B., Mainkar, D., Chalapathi Rao, N.V. and Heamann, L. (2010) Diamondiferous kimberlites in central India synchronous with Deccan flood basalts Earth Planet. Sci. Lett., v.290, pp.142–149.

    Google Scholar 

  • Lightfoot, P.C. (1993) The Interpretation of Geoanalytical Data. In: C. Riddle (Ed.), Analysis of Geological Materials, Marcel Dekker, Inc., New York, pp.377–455.

    Google Scholar 

  • Lightfoot, P.C. and Hawkesworth, C.J. (1988) Origin of Deccan Trap lavas: evidence from combined trace element and S-, Nd-, and Pb-isotpe studies. Earth Planet. Sci. Lett., v.91, pp.89–104.

    Google Scholar 

  • Lightfoot, P.C., Hawkesworth, C.J., and Sethna, S.F. (1987) Petrogenesis of rhyolites and trachytes from the Deccan Trap: Sr, Nd and Pb isotope and trace element evidence. Contrib. Mineral. Petrol., v.95, pp.44–54.

    Google Scholar 

  • Lightfoot, P.C., Hawkesworth, C.J., Devey, C.W., Rogers, N.W., and Van Carlstern, P.W.C. (1990) Source and differentiation of Deccan Trap lavas: implications of geochemical and mineral chemical variations. Jour. Petrol., v.31, pp.1165–1200.

    Google Scholar 

  • Macdonald, G.A. and Katsura, T. (1964). Chemical composition of Hawaiian lavas. Jour. Petrol., v.5, pp. 82–113.

    Google Scholar 

  • Macdougall, J.D. (Ed.) (1988) Continental flood basalts. Kluwer Academic, 341p.

  • Mahoney, J.J. (1988) Deccan basalts. In: Macdougall, J.D. (Ed.) Continental flood basalts. Kluwer Academic, pp.151–194.

  • Mahoney, J., Macdougall, J.D., Lugmair, G.W., Murali, A.V., Sankar Das, M. and Gopalan, K. (1982) Origin of the Deccan Trap flows at Mahableshwar inferred from Nd and Sr isotopic and chemical evidence. Earth Planet. Sci. Lett., v.60, pp.47–60.

    Google Scholar 

  • Mahoney, J.J., Macdougall, J.D., Lugmair, G.W., Gopalan, K. and Krishnamurthy, P. (1985) Origin of conortntemporaneous tholeiitic and K-rich alkali lavas: a case study from the northern Deccan Plateau, India. Earth Planet. Sci. Lett., v.72, pp.39–53.

    Google Scholar 

  • Mahoney, J.J., Sheth, H.C., Chandrasekharam, D. and Peng, Z.X. (2000) Geochemistry of flood basalts of the Toranmal section, Northern Deccan Traps, India: implications for regional Deccan stratigraphy. Jour. Petrol., v.41, pp.1099–1120.

    Google Scholar 

  • Malamoud, K. (2014) The Deccan Plume: geochemistry, petrology coupled with high-resolution paleomagnetic data — geodynamical and environmental consequences at the K-Pg boundary. Geochemistry. Ph.D thesis. Université de Grenoble, English.

  • Manu Prasanth, M.P., Hari, K.R. and Santosh, M. (2019) Tholeiitic basalts of Deccan large igneous province, India: An overview. Geol. Jour., pp.1–14. doi:https://doi.org/10.1002/gj.3497

  • Marzoli, A., Callegro, S., Baker, D.R., De Min, A., Renne, P.R. (2016) Time-related variation of volatile contents of Western Ghats volcanic formations, Deccan, India. EGU General Assembly 2016, held 17–22 April, 2016 in Vienna Austria, id. EPSC2016-4421

  • Matsuhisa, Y., Bhattacharya, S.K., Gopalan, K., Mahoney, J.J., and Macdougall, J.D. (1986) Oxygen isotope evidence for crustal contamination in Deccan basalts. Terra Cognita, v.6, p.181.

    Google Scholar 

  • McLean, D.M. (1985) Deccan Trap and mantle degassing in the terminal Cretaceous marine extinctions. Cretaceous Res., v.6, pp.235–259.

    Google Scholar 

  • Melluso, L., Beccaluva, L., Brotzu, P., Gregnanin, A., Gupta, A.K., Morbidelli, L., and Traversa, G. (1995) Constraints on the mantle sources of the Deccan traps from the petrology and chemistry of the basalts of the Gujarat State, Western India. Jour. Petrol., v.36, pp.1393–1432.

    Google Scholar 

  • Melluso, L., Barbeiri, M., and Beccaluva, L. (2004) Chemical evolution, petrogenesis, and regional chemical correlations of flood basalt sequence in the central Deccan Traps, India. In: H.C. Sheth and K. Pande (Eds.), Magmatism in India through time. Proc. Indian Acad. Sci. (Earth Planet. Sci.), v.113(4), pp.587–603.

  • Melluso, L., Mahoney, J.J. and Dallai, L. (2006) Mantle sources and crustal input as recorded in high-Mg Deccan Traps basalts of Gujarat (India). Lithos, v.89, pp.259–274.

    Google Scholar 

  • More, B.L. and Vijaya Kumar, K. (2018) Geochemical Evidences for Possible Absence of Cu-Sulfide Deposits in the Deccan Volcanic Province, India. Jour. Geol. Soc. India, v.92, pp.393–403.

    Google Scholar 

  • Morgan, W.J. (1972) Deep mantle convection plumes and plate motions. Mem. Geol. Soc. America, No.132, pp.7–22.

    Google Scholar 

  • Mukherjee, S., Misra, A. A., Calve’s, G. and Nemcok, M. (2017) Tectonics of the Deccan Large Igneous Province. Geol. Soc. London, Spec. Publ., No.445, pp.1–9.

    Google Scholar 

  • Murari, R., Krishnamurthy, P., Tihinenko, P.I. and Gopalan, K. (1993) Magnesian Ilmenites in Picrite Basalts from Siberian and Deccan Traps—Additional Mineralogical Evidence for Primary Melt Compositions(?). Mineral. Magz., v.57, pp.733–735.

    Google Scholar 

  • Nanda, L.K., Verma, M.B., Purohit, R.K., Khandelwal, M.K., Rai, S.D., and Mundra, K.L. (2017) LREE and Nb multi-metal potentiality of Amba Dongar carbonatite complex, Chhota Udepur district, Gujarat. In: S.G. Viladkar, Raymond Duraiswami and P. Krishnamurthy (Eds.), International Seminar “Carbonatites-alkaline rocks and associated mineral deposits” Amba Dongar, India. December 8–11, 2017, (Abstract Vol., pp. 43–44)

  • Najafi, S.J., Cox, K.G. and Sukheswala, R.N. (1981). Geology and geochemistry of the basalt flows (Deccan Traps) of the Mahad-Mahabaleshwar section. Mem. Geol. Soc. India, No.3, pp.300–315.

    Google Scholar 

  • Naldrett, A.J. (2004) Magmatic sulphide deposits: geology, geochemistry and exploration. Springer, Berlin, 727p.

    Google Scholar 

  • Officer, C.B., and Drake, C.L. (1983) The terminal Cretaceous environment events. Science, v.277, pp.1161–1167.

    Google Scholar 

  • O’Hara, M.J. (1968) The bearing of phase equilibria studies in synthetic and natural systems on the origin and evolution of basic and ultra basic. rocks. Earth Sci. Rev., v.4, pp.69–133.

    Google Scholar 

  • O’Hara, M.J. (1977) Geochemical evolution during fractional crystallisation of a periodically refilled magma chamber. Nature, v.266, pp.503–7.

    Google Scholar 

  • O’Hara, M.J. and Mathews, R.E. (1981) Geochemical evolution in an advancing periodically replenished, periodically tapped, continuously fractionated magma chamber. Jour. Geol. Soc. London, v.138, pp.237–277.

    Google Scholar 

  • Pande, K., Venkatesan, T.R., Gopalan, K., Krishnamurthy, P. and Macdougall, J.D. (1988) 40Ar-39Ar ages of alkali basalts from Kutch, Deccan Volcanic Province. India. Mem. Geol. Soc. India, No.10, pp. 145–150.

  • Pande, K., Cucciniello, C., Sheth, H., Vijayan, A., Sharma, K.K., Purohit, R., Jagadeesan, K.C. and Shinde, S. (2017a) Polychronus (early Cretaceous to Palaeogene) emplacement of the Mundwara alkaline complex, Rajasthan, India: 40Ar/39Ar geochronology and geodynamics. Int. Jour. Earth Science. (online). DOI https://doi.org/10.1007/s00531-016-1362-8

  • Pande, K., Yatheesh, V. and Sheth, H.C. (2017b) 40Ar/39Ar dating of the Mumbai tholeiites and Panvel flexure: intense 62.5Ma onshore-offshore Deccan magmatism during India-Laxmi Ridge-Seychelles breakup. Geophys. Jour. Internat., v.210, pp.1160–1170

    Google Scholar 

  • Pandey, R., Pandey, A., and Rao, N.V. C. (2019) Petrogenesis of end-Cretaceous/Early Eocene lamprophyres from the Deccan Large Igneous Province: Constraints on plume-lithosphere interaction and the post-Deccan lithosphere asthenosphere boundary (LAB) beneath NW India, Lithos, doi:https://doi.org/10.1016/j.lithos.2019.07.006

  • Pankov, V., Oleinikov, B.V., Krishnamurthy, P., Murari, R., and Gopalan, K. (1994) Mineral and melt inclusions in the giant plagioclase phenocrysts of Deccan basalts, Western Ghats, India: Some comparisons with plagioclases of intrusive Siberian Traps and implications on the physicochemical conditions during magmatic evolution. In: Subbarao, K.V. (Ed.), Volcanism: New Delhi, Wiley Eastern, pp.187–199.

  • Parisio, L., Jourdan, F., Marzoli, A., Melluso, L., Sethna, S.F., and Bellieni, G. (2016) 40Ar/39Ar ages of alkaline and tholeiitic rocks from the northern Deccan Traps: implications for magmatic processes and the K-Pg Boundary. Jour. Geol. Soc. Published Online First doi:https://doi.org/10.1144/jgs2015-133.

  • Paul, D.K., Potts, P.J., Rex, D.C., and Beckinsale, R.D. (1977) Geochemical and petrogenetic study of the Girnar igneous complex, Deccan volcanic province, India. Bull. Geol. Soc. America, v.88, pp.227–234.

    Google Scholar 

  • Paul, D.K., Ray, A., Das, B., Patil, S.K., and Biswas, S.K. (2007). Petrology, geochemistry and palaeomagnetism of the earliest magmatic rocks of Deccan Volcanic Province, Kutch, Northwest India. Lithos, doi:https://doi.org/10.1016/jlithos.2007.08.005.India

  • Peng, Z.X., and Mahoney, J.J. (1995) Drill-hole lavas from the northwestern Deccan Traps, and the evolution of Reunion hotspot mantle. Earth Planet. Sci. lett, v.134, pp.169–185.

    Google Scholar 

  • Peng, Z.X., Mahoney, J.J., Hooper, P.R., Harris, C. and Beane, J. (1994) A role for lower continental crust in flood basalt genesis? Isotopic and incompatible element study of the lower six formations of the Western Deccan Traps. Geochim. Cosmochim. Acta, v.57, pp.5109–5130.

    Google Scholar 

  • Peng, Z.X., Mahoney, J.J., Hooper, P.R., Macdougall, J.D. and Krishnamurthy, P. (1998) Basaalts of the northeastern Deccan Traps, India; isotopic elemental geochemistry and relations to the southwestern Deccan stratigraphy. Jour. Geophys. Res., v.103, pp.29843–29865.

    Google Scholar 

  • Peters, B.J. and Day, J.M.D. (2017) A geochemical link between plume head and tail volcanism. Geochem. Perspect. Lett., v.5, doi:https://doi.org/10.7185/geochemlet.1742.

  • Petrelli, M., Perugini, D. and Poli, G. (2003) Geometrical complexity vs. homogenization timeof flow structures generated by mixing of magmas in lava flows. Geophys. Res., Abstracts, v.5, p.05997

    Google Scholar 

  • Rader, E.L. Vanderkluysen, L. Clarke, A.B. (2015) Experimental Parameters for Wax Modeling of the Deccan Traps Flood Basalt Province. AGU Fall Meeting Abstracts.

  • Ray, J.S. and Pande, K. (1999) Carbonatite-alkaline magmatism associated with continental flood basalt at stratigraphic boundaries: cause for mass extinctions. Geophys. Res. Lett., v.26, pp.1917–1920.

    Google Scholar 

  • Ray, R., Shukla, A.D., Sheth H.C., Ray, J.S., Duraiswami R.A., Vanderkluysen L, Rautela C.S. and Mallik J (2008) Highly heterogeneous Precambrian basement under the central Deccan Traps, India: direct evidence from xenoliths in dykes. Gondwana Res., v.13, pp.375–385.

    Google Scholar 

  • Renne, P. R., Sprain, C.J., Richards, M.A., Self, S., Vanderkluysen, L., and Pande, K. (2015) State shift in Deccan Volcanism at the Cretaceous-Paleogene boundary possibly induced by impact. Science, v.350, pp.76–78.

    Google Scholar 

  • Richards, M.A., Alvarez W., Self S., Karlstrom L., Renne P.R., Manga M., Sprain C.J., Smit J, Vanderkluysen, L., Gibson, S.A. (2015) Triggering of the largest Deccan Eruptions by the Chicxulub impact. Bull. Geo.l Soc. America, v.127, pp.1507–1520.

    Google Scholar 

  • Sahasrabudhe, Y. S. (1964) The origin of bauxite deposits of Gujarat, India. In: A.P. Subramaniam and S. Balakrishna (Eds), Advancing frontiers in Geology and Geophysics. Krishnan Volume. Indian Geophysical Union, Hyderabad, India, pp.461–480.

    Google Scholar 

  • Sahu, N.K. and Karim, M.A. (1993) On the occurrence of alkali basalts (basanitic)and alkaline felsic rocks around Kanesra, Rajkot Dt., Gujarat. Indian Minerals, v.47, pp.219–228.

    Google Scholar 

  • Samant, B., Mohabey, D.M., Srivastava, P., and Thakre, D. (2014) Palynology and clay mineralogy of the Deccan volcanic associated sediments of Saurashtra, Gujarat. Jour. Earth Syst. Sci., v.123, pp.219–232

    Google Scholar 

  • Samant, H.P., Patel, V., Pande, K., Sheth, H., Jagadeesan, K.C. (2019) 40Ar/39Ar dating of tholeiitic flows and dykes of Elephanta Island, Panvel flexure zone, western Deccan Traps: A five-million-year record of magmatism preceding India-Laxmi Ridge-Seychelles breakup. Jour. Volcanol. Geotherm. Res., v.379, pp.12–22.

    Google Scholar 

  • Sano, T., and Fujii, T. (1996) Chemical variation of the uncontaminated (Ambenali-like) basalts of the Deccan traps. In: Deshmukh, S.S. and Nair, K.K.K. (Eds.), Deccan Basalts, Gondwana Geological Society, Nagpur, Spl. Vol.2, pp.201–310.

  • Sano, T., Fuji, T., Deshmukh, S. S., Fukuoka, T. and Aramaki, S. (2001) Differentiation processes of Deccan Trap basalts: contribution from geochemistry and experimental petrology. Jour. Petrol., v.42, pp.2175–2195.

    Google Scholar 

  • Schöbel, S., de Wall, H., Ganerød, M., Pandit, M.K. and Rolf, C. (2014) Magnetostratigraphy and 40Ar-39Ar geochronology of the Malwa Plateau region (Northern Deccan Traps), central western India: Significance and correlation with the main Deccan Large Igneous Province sequences. Journal of Asian Earth Sciences. Jour. Asian Earth Sci., v.89, pp.28–45.

    Google Scholar 

  • Schoene, B., Samperton, K.M., Eddy, M.P., Keller, G., Adatte, T., Bowring, S.A., Khadri, S.F.R. and Brian Gertsch, B. (2015) U-Pb geochronology of the Deccan Traps and relation to the end-Cretaceous mass extinction. Science, v.347, pp.182–184.

    Google Scholar 

  • Segev, A. (2002) Flood basalts, continental breakup and the dispersal of Gondwana: evidence for periodic migration of upwelling mantle flows (plumes). EGU, Stephen Mueller Special Publication Series, 2, pp.171–191.

    Google Scholar 

  • Self, S., Thordarson, T., and Keszthelyi, L. (1997) Emplacement of continental flood basalt lava flows. In: Mahoney, J.J and Coffin, M.F. (Eds.), Large Igneous Provinces: continental, oceanic and planetary flood volcanism. pp.381–395.

  • Self, S., Blake, S., Sharma, K., Widdowson, M., and Sephton, S. (2008) Sulfur and Chlorine in Late Cretaceous Deccan Magmas and Eruptive Gas Release. Science, v.319, pp.1654–1657.

    Google Scholar 

  • Sen, G. (1983) Deccan trap intrusion: magma mixing in the Chakhla-Delakhari sill, Chhindwara district, Madhya Pradesh. Jour. Geol. Soc. India, v.24, pp.381–393.

    Google Scholar 

  • Sen, G. (1986) Mineralogy and petrogenesis of the Deccan trap lavas around Mahabaleshwar, India. Jour.f Petrol., v.27, pp.627–623.

    Google Scholar 

  • Sen, G. (1995) A simple petrologic model for the generation of Deccan trap magmas. Internat. Geol. Review, v.37, pp.825–850.

    Google Scholar 

  • Sen, G. (2001) Generation of Deccan Trap magmas. Indian Acad. Sci. (Earth Planet. Sci.), v.110, pp.409–431.

    Google Scholar 

  • Sen, G., and Chandrasekharam, D. (2011) Deccan Traps flood basalt province: an evaluation of the thermo mechanical plume model. In: Ray, J., Sen, G., Ghosh, B., (Eds.), Topics in Igneous Petrology. Springer, Berlin, pp.290–54.

    Google Scholar 

  • Sen, G., Hames, W. E., Paul, D.K., Biswas, S.K., Ray, A., Sen. (2016) Pre-Deccan and Deccan Magmatism in Kutch, India: Implications of New 40Ar/39Ar Ages of Intrusions. In: Mahesh G. Thakkar (Ed.), Recent Studies on the Geology of Kachchh. Geol. Soc. India, Spec. Publ., no.6, pp.211–222.

  • Sethna, S.F. (1989) Petrology and geochemistry of the acid, intermediate and alkali rocksassociated with the Deccan basalts in Gujarat and Maharashtra. In: C. Leelanandam (Ed.), Mem. Geol. Soc. India, No.15, pp. 47–62.

  • Sethna, S.F (1999) Geology of Mumbai and surrounding areas and its position in the Deccan Volcanic Stratigrahphy. Jour. Geol. Soc. India, v.53, pp.359–365.

    Google Scholar 

  • Shandilya, P., Chatterjee, P., Pattabhiram, K., Bodas, M., Pande, K., Kale, V. S. (2020) Rajgad GPB: a megaporphyritic flow field, western Deccan volcanic province, India. Jour. Earth Syst. Sci., v.129, art. 113

  • Shaw, C.S.J. (2018) Experimental Petrology: Methods, Examples, and Applications. Geoscience Canada, v.45, pp.67–84.

    Google Scholar 

  • Sheikh, J.M., Sheth, H., Naik, A., Keluskar, T. (2020) Widespread rheomorphic and lava-like silicic ignimbrites overlying flood basalts in the northwestern and northern Deccan Traps. Bull. Volcanol., in press, doi:https://doi.org/10.1007/s00445-020-01381-9

  • Shekhawat, M.S. and Somani, M.K. (2009) Mineral economics of bauxite resources of Saurashtra region, Gujarat in light of amendments in mineral legislation. Indian Jour. Geosci., v.63, pp.297–304.

    Google Scholar 

  • Sheth, H.C. (2005a) Were the Deccan Flood Basalts Derived in Part from Ancient Oceanic Crust within the Indian Continental Lithosphere? Gondwana Res., v.8, pp.109–127.

    Google Scholar 

  • Sheth, H. C. (2005b) From Deccan to Reunion.: no trace of a mantle plume. In: Foulgar, G.R., Natland, J.B., Presnall, D.C., and Anderson, D.L. (Eds.), Geol. Soc. America, Spec. Paper, no.388, pp.477–501.

  • Sheth, H. C. (2007) Plume-related regional pre-volcanic uplift in the Deccan Traps: Absence of evidence, evidence of absence. In: Fougler, G.R., and Jurdy, D.M. (Eds.) Plates, Plumes and Planetary processes. Geol. Soc. America, Spl. Paper, 430, pp. 785–813.

  • Sheth, H.C. (2016) Giant plagioclase basalts: Continental flood basalt-induced remobilization of anorthositic mushes in a deep crustal sill complex. Bull. Geol. Soc. America, v.128, No.5/6, pp.916–925.

    Google Scholar 

  • Sheth, H.C. (2020) Pipe vesicles. In basalt: Trails left by dense immiscible melt droplets sinking through a viscous basal thermal boundary layer. Earth-Science Reviews, v.201, doi:https://doi.org/10.1016/j.earscirev.2019.103031

  • Sheth, H.C and Melluso, L. (2008). The Mount Pavagadh volcanic suite, Deccan Traps: geochemical stratigraphy and magmatic evolution. Jour. Asian Earth Sci., v.32, pp.5–21.

    Google Scholar 

  • Sheth, H.C. and Pande, K. (2014). Geological and 40Ar/39Ar age constraints on late-stage Deccan rhyolitic volcanism, inter-volcanic sedimentation, and the Panvel flexure from the Dongri area, Mumbai. In: Sheth, H. C. and Vanderkluysen, L. (Eds.), Flood Basalts of Asia (John J. Mahoney Memorial Volume). Jour. Asian Earth Sci., v.84, pp.167–175.

  • Sheth, H.C. and Ray, J.S. (2002) Rb/Sr-87S/86Sr variations in Bombay trachytes and rhyolites (Deccan Traps): Rb-Sr isochron or AFC process?. Internat. Geol. Rev., v.44, pp.624–638.

    Google Scholar 

  • Sheth, H.C., Pande, K., Bhutani, R. (2001a) 40Ar-39Ar ages of Bombay trachytes: Evidence for a Palaeocene phase of Deccan volcanism. Geophys. Res. Lett., v.28, pp.3513–3516.

    Google Scholar 

  • Sheth, H.C., Pande, K., Bhutani, R. (2001b) 40Ar-39Ar dating of a national geological monument: the Gilbert Hill basalt, Bombay, Deccan Traps. Curr. Sci., v.80, pp.1437–1440.

    Google Scholar 

  • Sheth, H.C., Mahoney, J.J., Chandrasekharam, D. (2004) Geochemical stratigraphy of Deccan flood basalts of the Bijasan Ghat section, Satpura Range, India. Jour. Asian Earth Sci., v.23, pp.127–139

    Google Scholar 

  • Sheth, H.C., Ray, J.S., Ray, R., Vanderkluysen, L.C., Mahoney, J.J., Kumar, A., Shukla, A.D., Partha Das, Adhikari, S. and Jana, B. (2009) Geology and geochemistry of Pachmarhi dykes and sills, Satpura Gondwana Basin, central India: problems of dyke-sill-flow correlations in the Deccan Traps. Contrib. Mineral. Petrol., v.158, pp.357–380. doi:https://doi.org/10.1007/s00410-009-0387-4

    Google Scholar 

  • Sheth, H.C., Choudhary, A.K., Bhattacharyya, S., Cucciniello, C., Laishram, R., and Gurav, T. (2011) The Chogat-Chamardi subvolcanic complex, Saurashtra, north western Deccan Traps: Geology, petrochemistry, and petrogenetic evolution. Jour. Asian Earth Sci., v.41, pp.307–324

    Google Scholar 

  • Sheth, H.C., Choudhary, A. K., Cucciniello, C., Bhattacharyya, S., Laishram, R. and Gurav, T. (2012) Geology, petrochemistry, and genesis of the bimodal lavas of Osham Hill, Saurashtra, north western Deccan Traps. Jour. Asian Earth Sci., v.43, pp.176–192.

    Google Scholar 

  • Sheth, H.C., Zellmer, G.F., Kshirsagar, P.V., and Cucciniello, C. (2013) Geochemistry of the Palitana flood basalt sequence and the Eastern Saurashtra dykes, Deccan Traps: clues to petrogenesis, dyke-flow relationships, and regional lava stratigraphy. Bull Volcanol, v.75, p.701. DOI https://doi.org/10.1007/s00445-013-0701

    Google Scholar 

  • Sheth, H. C., Zellmer, G. F., Demonterova, E. I., Ivanov, A. V., Kumar, R., Patel, R. K. (2014) The Deccan tholeiite lavas and dykes of Ghatkopar-Powai area, Mumbai, Panvel flexure zone: Geochemistry, stratigraphic status, and tectonic significance. In: Sheth, H. C., Vanderkluysen, L. (Eds.), Flood Basalts of Asia (John J. Mahoney Memorial Volume). Jour. Asian Earth Sci., v.84, pp.69–82.

  • Sheth, H.C., Pande, K., Vijayan, A., Sharma, K. K., and Cucciniello, C. (2017) Recurrent Early Cretaceous Indo-Madagascar (89-86 Ma) and Deccan (66 Ma) alkaline magmatism in the Sarnu-Dandali complex Rajasthan: 40Ar/39Ar age evidence and geodynamic significance. Lithos, v.284–285, pp.512–524.

    Google Scholar 

  • Sheth, H.C., Vanderkluysen, L.C., Demonterova, E.I., Ivanov, A.V., and Savatenkov, V.M. (2019) Geochemistry and 40Ar/39Ar geochronology of the Nandurbar Dhule mafic dyke swarm: Dyke sill flow correlations and stratigraphic development across the Deccan flood basalt province. Geological Journal, v.54, pp. 157–176.

    Google Scholar 

  • Sheikh, J.M., Sheth, H.C., Naik, A., and Keluskar, T. (2020) Widespread rheomorphic and lava-like silicic ignimbrites overlying flood basalts in the northwestern and northern Deccan Traps. Bull. Volcanol., v.82, doi:https://doi.org/10.1007/s00445-020-01381.

  • Shrivastava, J. P., Giridhar, M., and Kumar, R. (2008). Petrography, composition and petrogenesis of basalts from Chakhla-Delakhari intrusive complex, Eastern Deccan Volcanic province, India. In: R.K. Srivastava, Ch. Sivaji and N.V. Chalapathi Rao (Eds.), Indian Dykes: Geochemistry, Geophysics and Geochronology, Narosa Publishing House Pvt. Ltd, New Delhi, India, pp.83–107.

    Google Scholar 

  • Shrivastava, J.P., Kumar, R. and Rani, N. (2017) Feeder and post Deccan Trap dyke activities in the northern slope of the Satpura Mountain: Evidence from new40Ar-39Ar ages. Geoscience Frontiers v.8(3), pp.483–492.

    Google Scholar 

  • Shukla, A.D., Bhandari, N., Kusumgar, S., Shukla, P.N., Ghevariy, Z.V., Gopalan, K. and Balaram, V. (2001) Geochemistry and magneto-stratigraphy of Deccan flows at Anjar, Kutch. Proc. Indian Acad. Sci. (Earth Planet. Sci.), v.110, pp.111–132.

    Google Scholar 

  • Simmoneti, A., Goldstein, S.L., Schmidberger, S.S. and Viladkar, S.G. (1998) Geochemical and Nd, Pb, and Sr isotopic data from Deccan alkaline complexes-inferences for mantle sources and plume-lithosphere interaction. Jour. Petrol., v.39, pp.1847–1864.

    Google Scholar 

  • Singer, D.A. (1998) Revised grade and tonnage model of carbonatite deposits. Open-File Report 98–235, USGS

  • Solanki, J.N., Bhattacharya, D.D., Jain, A.K. and Mukherjee, A. (1996) Stratigraphy and tectonics of the Deccan Traps of Mandla. In: Deshmukh, S.S. and Nair, K.K.K. (Eds.), Deccan Basalts. Gondwana Geological Society, Nagpur, Spec. Vol.2, pp.101–114.

    Google Scholar 

  • Sprain, C.J., Renne, P. R., Vanderkluysen, L., Pande, K., Self, S., and Mittal, T. (2019) The eruptive tempo of Deccan volcanism in relation to the Cretaceous-Palaeogene boundary. Science, v.363, pp.866–870.

    Google Scholar 

  • Sreenivasa Rao., Ramasubba Reddy, N., Subbarao, K.V., and Prasad, C.V.R.K. and Radhakrishnamurthy, C. (1985) Chemical and Magnetic Stratigraphy of parts of Narmada Region, Deccan Basalt Province. Jour. Geol. Soc. India, v.26, pp.617–639.

    Google Scholar 

  • Srivastava, R.K., Pandit, M.K., and Upadhyaya, R. (1988) Petrography and and chemical stratigraphy of Deccan basalts from a part of the Malwa Plateau: use of cluster analyses in chemical stratigraphy. Mem. Geol. Soc. India, No.10, pp. 181–198.

    Google Scholar 

  • Storey, C.B (1995) The role of mantle plumes in continental break up: case histories from Gondwanaland. Nature, v.377, pp.301

    Google Scholar 

  • Subbarao, K.V. (1988) Deccan Basalts. (Ed.), Mem. Geol. Soc. India, No.10.

  • Subbarao, K.V. (1999) Deccan Volcanic Province, West Volume, (Ed.), Mem. Geol. Soc. India, No.43(1) and (2), 947p.

  • Subbarao, K.V. and Sukheswala, R.N. (Eds.), (1981) Deccan volcanism and related basalt provinces in other parts of the world. Mem. Geol. Soc. India, No.3, 474p.

  • Subbarao, K.V., Hooper, P.R., Dayal, A.M., Walsh and Gopalan, K. (1999) Narmada dykes. Mem. Geol. Soc. India, No.43, pp.891–902.

    Google Scholar 

  • Subramaniam, A.P. and Parimoo, M.L. (1964) The Amba Dongar fluorite deposit — a unique example of mineralisation related to Deccan volcanism. In: A.P. Subramaniam and S. Balakrishna (Eds.), M.S. Krishnan Volume, Indian Geophysical Union, Hyderabad, India, pp.441–450.

    Google Scholar 

  • Subramanian, V. (1981) Geomorphology of the Deccan Volcanic Province. Mem. Geol. Soc. India, No.3, pp.101–116.

    Google Scholar 

  • Sukheswala, R.N. and Poldervaart, A. (1958) Deccan basalts of the Bombay area. Bull. Geol. Soc. America, v.69, pp.1475–1494.

    Google Scholar 

  • Sukheswala, R.N. and Sethna, S.F. (1969) Layered gabbro of the igeous complex of Phenai Mata. Jour. Geol. Soc. India, v.10, 177–187.

    Google Scholar 

  • Talusani, R.V. (2001) A newly reported alkali basalt flow near Bhir, Deccan Volcanic Province, India. Jour. Asian. Earth Sci., v.19, pp.501–506.

    Google Scholar 

  • Tectonic Map of India, 1:2000, 000 (1963) and (1999). Gological Survey of India, Kolkata.

  • Vaidyanadhan, R. and Ramakrishnan, M. (2008) Geology of India, Volume 2, Geol. Soc. India, Bangalore. 994p.

  • Vanderkluysen, L., Mahoney, J.J., Hooper. PR, Sheth, H.C. and Ray, R. (2011). The feeder system of the Deccan Traps (India): insights from dyke geochemistry. Jour. Petrol., v.52, pp.315–343

    Google Scholar 

  • Veena Krishna. (2000) Radiogenic and stable isotopic systematics of some Phanerozoic Indian carbonatites: implications on mantle source characteristics. Ph. D thesis. Osmania University, Hyderabad, India. 122p.

    Google Scholar 

  • Venkatesan, T.R., Pande, K., and Gopalan, K. (1993). Did Deccan volcanism pre-date the Cretaceous/Tertiary transition?. Earth Planet Sci. Lett., v.119, pp.181–189.

    Google Scholar 

  • Verma, O. and Khosla, A. (2019) Developments in the stratigraphy of the Deccan Volcanic Province, Peninsular India. Geoscience, v.351, pp.461–476.

    Google Scholar 

  • Vijaya Kumar, K., Chavan, C., Sawant, S., Naga Raju, K., Kanakdande, P., Patode, S., Deshpande, K., Krishnamacharlu, S. K. G., Vaideswaran, T., and Balaram, V. (2009) Geochemical investigation of a semi-continuous extrusive basaltic section from the Deccan Volcanic Province, India. implications for the mantle and magma chamber processes. Contrib. Mineral. Petrol., v.159, pp.839–852.

    Google Scholar 

  • Vijaya Kumar, K., Laxman, M.B., and Nagaraju, K.. (2017). Mantle source heterogeneity in continental mafic Large Igneous Provinces: insights from the Panjal, Rajmahal and Deccan basalts, India. In: Sensarma, S. and Storey, B.C. (Eds.), Large Igneous Provinces from Gondwana and Adjacent Regions. Geological Society, London, Spec.Publ., no.463, doi:https://doi.org/10.1144/SP463.5

    Google Scholar 

  • Viladkar, S.G. (1998) Carbonatite occurrences in Rajasthan, India. Petrologia, v.6(3), pp.295–306.

    Google Scholar 

  • Wager, L.R. and Brown, G.M. (1968) Layered Igneous rocks. Oliver and Boyd, Edinburgh and London, 588p.

  • Washington, H.S. (1922) Deccan traps and other plateau basalts. Bull. Geol. Soc. Amer., v.33, pp.765–805.

    Google Scholar 

  • Wellmann, P., and McElhinny, M. (1970) K-Ar ages of the Deccan Traps. Nature, v.227, pp.595–596.

    Google Scholar 

  • West, W.D.(1958). The petrography and petrogenesis of forty eight flows of Deccan Trap penetrated by borings in Western India. Trans. Nat. Inst. Sci., v.4(1), pp.1–56.

    Google Scholar 

  • West, W.D. (1985) The Deccan trap and other flood eruptions-a comparative study. D.N. Wadia Medal lecture, Proc. Ind. Nat. Sci. Acad., v.51, A, No.3, pp.465–494.

    Google Scholar 

  • Widdowson, M., Walsh, J.N., and Subbarao, K.V. (1997) The geochemistry of Indian red bole horizons: paleoenvironmental implications of Deccan intravolcanic paleo surfaces. In: Paleosurfaces: recognition, reconstruction and paleo-environmental interpretation. Geol. Soc. London, Spec. Pub. No.120, pp.269–282.

    Google Scholar 

  • Widdowson, M., Pringle, M.S, and Fernandez, O.A. (2000) A Post K-T Boundary (Early Palaeocene) Age for Deccan-type Feeder Dykes, Goa, India. Jour. Petrol., v.41, pp. 1177–1194.

    Google Scholar 

  • Wignall, P.B. (2001) Large igneous provinces and mass extinctions. Earth Sci. Rev., v.53, pp.1–33.

    Google Scholar 

  • Wilkins, A., Subbarao, K.V., Ingram, G., and Walsh, J.N. (1994) Weathering regimes within the Deccan basalts. n: K.V. Subbarao, (Ed.), Volcanism, Wiley Eastern Ltd., New Delhi, pp.217–231.

    Google Scholar 

  • Wyllie, P.J. (1981) Experimental petrology of basalts and their source rocks. Basaltic Volcanism on the Terrestrial Planets, Lunar and Planetary Institute, NASA, USA, pp.493–630.

    Google Scholar 

  • Xiao, L., Xu, Y. G., Mei, H. J., Zheng, Y. F., He, B., and Pirajno, F. (2004) Distinct mantle sources of low-Ti and high-Ti basalts from the western Emeishan large igneous province, SW China: implications for plume-lithosphere interaction. Earth and Planet. Sci. Lett., v.228, pp.525–546. doi:https://doi.org/10.1016/j.epsl.2004.10.002

    Google Scholar 

  • Xu, Y., Chung, S. L., Jahn, B. M., and Wu, G. (2001) Petrologic and geochemical constraints on the petrogenesis of Permian-Triassic Emeishan flood basalts in southwestern China. Lithos, v.58, pp.145–168. doi:https://doi.org/10.1016/S00244937(01)00055X

    Google Scholar 

  • Yaoling, N. and Wilson, M. (2011). Magma generation and evolution and global tectonics: An issue in honour of Peter J.Wyllie for his life-long contributions by means of experimental petrology to understanding how the Earth works. Jour. Petrol., v.52, pp.1239–1242.

    Google Scholar 

  • Yaxley, G.M. (2000) Experimental study of the phase and melting relations of homogeneous basalt + peridotite mixtures and implication for the petrogenesis of flood basalt. Contrib. Mineral. Petrol., v.139, pp.326–338.

    Google Scholar 

  • Yaxley, G.M. and Brey, G.P. (2008) The Roles of Petrology and Experimental Petrology in Understanding Global Tectonics (Foreword). Jour. Petrol., v.49, pp.587–589

    Google Scholar 

  • Yoder H. S., Jr. (1976) Generation of Basaltic Magma. National Academy of Sciences, Washington. 265p.

    Google Scholar 

  • Yoder, H.S (Jr). and Tilley, C.E. (1962) The origin of basalt magmas: an experimental study of natural and synthetic systems. Jour. Petrol., v.3, pp.342–532.

    Google Scholar 

  • Zellmer, G.F., Sheth, H.C., Iizuka, Y., and Lai, Y. (2012) Remobilization of granitoid rocks through mafic recharge: evidence from basalt-trachyte mingling and hybridization in the Manori-Gorai area, Mumbai, Deccan Traps. Bull. Volcanol., v.74, pp.47–66.

    Google Scholar 

Download references

Acknowledgements

This review is dedicated to all those who have contributed to the knowledge base on the DVP since the pioneers of the mid 1840s. The following persons, however, need a special mention. Late Dr. William Dixon West, formerly Director of the Centre of Advanced Study in Geology, University of Sagar (presently known as the Dr. Harisingh Gour Central University) and Dr. G.R. Udas of AMD under whom the author began his studies in 1966 on basalts and carbonatites of the Narmada Valley. Later from 1970–1974 researches on the rare picrite basalts of Saurashtra, previously studied by West were continued under my late Guru Keith Gordon Cox, formerly at Edinburgh and later at Oxford, UK. I have been fortunate to be also guided by Prof. B.G.J. Upton at Edinburgh during Keith Cox’s Sabatical in Germany during 1972–1973 and later in 1974 by Godfrey Fitton, when Keith had joined Oxford. Dr. K. Gopalan, formerly of PRL and later at NGRI is thanked for co-opting me in the Indo-US and Indo-USSR programmes of study of the DVP and Siberian Traps during 1981–1991. Enlightening discussions on Flood basalt genesis and evolution with late John Mahoney, J. D. Macdougall, G. V. Nesterenko, V.V. Zolotukin, A.I. Al Mukhamedov and B.V Oleinikov, A.V. Murali, Kanchan Pande and R. Murari, all members of the joint Projects, had been very insightful and I must record their influence with gratitude. Former Directors of AMD, namely Dr. G. R. Udas, A. V. Phadke, T.M. Mahadevan and Dr. S. Viswanathan are thanked for allowing me to pursue the part-time studies of basalts of the Deccan and Siberia during my tenure in AMD. Dr. Raymond Duraiswami and Ms. Purva Gadapallu of the Dept. of Geology, Savithribhai Phule Pune University, and my former colleague Dr. Chanchal Sarbanjna, AMD, helped in getting some of the illustrations used in this review and also providing some reprints. I am thankful to them.

Prof. Hetu Sheth, IIT, Mumbai, kindly provided the ‘Deccan data’ compiled by late Dr. John Mahoney of the School of Ocean and Earth Science and Technology, University of Hawaii, Honolulu, USA and numerous PDFs on recent publications on the DVP. The anonymous official reviewer provided a thorough review and constructive suggestions besides the copy-editing that made the MS more comprehensive and I am extremely thankful to him for the efforts.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Krishnamurthy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krishnamurthy, P. The Deccan Volcanic Province (DVP), India: A Review. J Geol Soc India 96, 111–147 (2020). https://doi.org/10.1007/s12594-020-1521-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12594-020-1521-1

Navigation