Skip to main content
Log in

Quantification of Quartz Reefs and Mafic Dykes of Bundelkhand, Craton, Central India: A Study Based on Spatial and Fractal Analysis

  • Research Articles
  • Published:
Journal of the Geological Society of India

Abstract

The geological structures and their 2D geometrical relationships are often quantified using spatial and fractal techniques. In this study, quartz reefs and dykes from Bundelkhand craton of central India are investigated using spatial and fractal analysis to quantify the spatial relationship and establish the deformational events. The Bundelkhand craton comprises of massive granite batholiths, associated with extensive hydrothermal activities that led to the formation of numerous quartz reefs mostly in NE-SW and NW-SE directions. The area is also replete with NW-SE and NE-SW oriented mafic dykes, which are assumed to have formed during late stage crustal rejuvenation.

The spatial analysis suggests that each set of reefs and dykes are not the result of random processes (high Z score and low P-values). The fractal analyses also suggest, that there are at least two deformational events that led to the formation of quartz reefs and dykes independently in the Bundelkhand craton. The anisotropy of fractal dimension study validates the results obtained from the spatial statistical analysis. This study has provided important informations related to the number of deformational events and deformation localization in the study area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Basu, A.K. (2010) Precambrian Geology of the Bundelkhand terrain, central India and adjacent part of western India. Jour. Econ. Geol. Georesour. Manag, v.7, pp.1–53.

    Google Scholar 

  • Basu, A.K. (2007) Role of the Bundelkhand Granite Massif and the Son-Narmada megafault in Precambrian crustal evolution and tectonism in Central and Western India. Jour. Geol. Soc. India, v.70(5), pp.745.

    Google Scholar 

  • Basu, A.K. (1986) Geology of parts of the Brundelkhand granite massif central India. Rec. Geol. Surv. India, v.117(2), pp.61–124.

    Google Scholar 

  • Bhattacharya, A.R., Singh, S.P. (2013) Proterozoic crustal scale shearing in the Bundelkhand massif with special reference to quartz reefs. Jour. Geol. Soc. India, v.82(5), pp.474–484.

    Article  Google Scholar 

  • Bigham, J.M., Sanghyeok, K. (2012) Building a Highway Linear Referencing System from Preexisting Reference Marker Measurements for Transportation Data Management. URISA Jour., v.25, pp.29–37.

    Google Scholar 

  • Blenkinsop, T.G. (1991) Cataclasis and processes of particle size reduction. Pure Appld. Geophys., v.136(1), pp.59–86.

    Article  Google Scholar 

  • Bornmann, L., Waltman, L. (2011) The detection of “hot regions” in the geography of science—A visualization approach by using density maps. Jour. Informetrics, v.5(4), pp.547–553.

    Article  Google Scholar 

  • Crawford, A.R. (1970) The Precambrian geochronology of Rajasthan and Bundelkhand, northern India. Canadian Jour. Earth Sci., v.7(1), pp.91–110.

    Article  Google Scholar 

  • Dai, D., Chen, Y.S., Chen, P.S., Chen, Y.L. (2012) Case cluster shifting and contaminant source as determinants of melioidosis in Taiwan. Tropical Medicine & International Health, v.17(8), pp.1005–1013.

    Article  Google Scholar 

  • Davarpanah, A., Babaie, H.A., Dai, D. (2017) Spatial autocorrelation of Neogene-Quaternary lava along the Snake River Plain, Idaho, USA. Earth Science Informatics, pp.1–17.

  • Davarpanah, A. (2014) Spatio-Temporal Analyses of Cenozoic Normal Faulting, Graben Basin Sedimentation, and Volcanism around the Snake River Plain, SE Idaho and SW Montana.

  • Davarpanah, A., Babaie, H.A. (2013). Anisotropy of fractal dimension of normal faults in northern Rocky Mountains: Implications for the kinematics of Cenozoic extension and Yellowstone hotspot’s thermal expansion. Tectonophysics, v.608, pp.530–544.

    Article  Google Scholar 

  • De Frutos, A., Olea, P.P., Vera, R. (2007) Analyzing and modelling spatial distribution of summering lesser kestrel: the role of spatial autocorrelation. Ecological Modelling, v.200(1), pp.33–44.

    Article  Google Scholar 

  • Dimri, V. (2005) Fractal behavior of the earth system (Vol. 208). Berlin: Springer.

    Book  Google Scholar 

  • Zengchao, F., Yangsheng, Z. and Dong, Z (2009) Investigating the scale effects in strength of fractured rock mass. Chaos, Solitons & Fractals, v.41(5), pp.2377–2386.

    Article  Google Scholar 

  • Gerik, A.M. (2009) Modification and automation of fractal geometry methods: new tools for quantifying rock fabrics and interpreting fabric-forming processes (Doctoral dissertation, München, Techn. Univ., Diss., 2009).

  • Gerik, A., Kruhl, J.H. (2009) Towards automated pattern quantification: time-efficient assessment of anisotropy of 2D patterns with AMOCADO. Computers & Geosciences, v.35(6), pp.1087–1097.

    Article  Google Scholar 

  • Griffith, D.A. (2013) Spatial autocorrelation and spatial filtering: gaining understanding through theory and scientific visualization. Springer Science & Business Media.

  • Healy, D., Rizzo, R.E., Cornwell, D.G., Farrell, N.J.C., Watkins, H., Timms, N.E., Gomez-Rivas, E., Smith, M. (2017) FracPaQ: A MATLAB™ toolbox for the quantification of fracture patterns. Jour. Struc. Geol., v.95, pp.1–16.

    Article  Google Scholar 

  • Hossain, M.S., Kruhl, J.H. (2015) Fractal Geometry-Based Quantification of Shock-Induced Rock Fragmentation in and around an Impact Crater. Pure Appld. Geophys., v.172(7), pp.2009–2023.

    Article  Google Scholar 

  • Hossain, M.S., Hammes, D.M., Seybold, L., Ord, A., Blenkinsop, T., Peternell, M., Heuss, S., Kruhl, J.H. (2015) Quantification of fragmentation structures in a silicified fault zone: The Fountain Range Fault (Mt. Isa Inlier, Australia). In: 17th Annual Conference of the International Association for Mathematical Geosciences, Freiberg, Germany. Abstract no. 473.

  • Hossain, M.S. (2016) Fractal Geometry and its Application in Geosciences. In: Mamtani M.A. (Ed.), Developments in Geosciences in the Past Decade - Emerging Trends for the Future & Impact on Society, and AGM-2016 of the Geological Society of India, Indian Institute Technology (IIT) Kharagpur, India. Abstract volume, pp.234–239.

    Google Scholar 

  • Jolly, R.J.H., Sanderson, D.J. (1997) A Mohr circle construction for the opening of a pre-existing fracture. Jour.Struc. Geol., v.19(6), pp.887–892.

    Article  Google Scholar 

  • Kaye, B.H. (1989) A random walk through fractal dimensions.

  • Kruhl, J.H. (2013) Fractal-geometry techniques in the quantification of complex rock structures: a special view on scaling regimes, inhomogeneity and anisotropy. Jour.Struc. Geol., v.46, pp.2–21.

    Article  Google Scholar 

  • Liu, C., Tang, C.S., Shi, B., Suo, W.B. (2013) Automatic quantification of crack patterns by image processing. Computers & Geosciences, v.57, pp.77–80.

    Article  Google Scholar 

  • Mandelbrot, B.B. (1982) The fractal geometry of nature. San Francisco, CA.

  • Mandelbrot, B.B. (1977) Fractals: form, chance, and dimension (Vol. 706). San Francisco: WH Freeman.

    Google Scholar 

  • Main, I.G., Papasouliot, T.L.O., Hatton, C.G., Meredith, P.G. (1999) One slope or two? Detecting statistically significant breaks of slope in geophysical data, with application to fracture scaling relationships. Geophys. Res. Lett., v.26(18), pp.2801–2804.

    Article  Google Scholar 

  • Misra, R.C. (1960) Quartz reefs of Bundelkhand and their origin. Proc. 47th Indian Sci. Cong. Pt 3, Abstract, pp.341–342.

  • Mondal, T.K., Mamtani, M.A. (2013) 3-D Mohr circle construction using vein orientation data from Gadag (southern India)-implications to recognize fluid pressure fluctuation. Jour. Struc. Geol., v.56, pp.45–56.

    Article  Google Scholar 

  • Mondal, M.E.A., Zainuddin, S.M. (1996) Evolution of the Archean PalaeoproterozoicBundelkhand Massif, central India-evidence from granitoid geochemistry. Terra Nova, v.8(6), pp.532–539.

    Article  Google Scholar 

  • Peacock, D.C.P., Sanderson, D.J. (1991) Displacements, segment linkage and relay ramps in normal fault zones. Jour. Struc. Geol., v.13, pp.721–733.

    Article  Google Scholar 

  • Perugini, D., Poli, G., Christofides, G., Eleftheriadis, G. (2003) Magma mixing in the Sithonia Plutonic Complex, Greece: evidence from mafic microgranular enclaves. Mineral. Petrol., v.78(3), pp.173–200.

    Article  Google Scholar 

  • Peternell, M., Bitencourt, M.F., Kruhl, J.H. (2011) Combined quantification of anisotropy and inhomogeneity of magmatic rock fabrics-An outcrop scale analysis recorded in high resolution. Jour. Struc. Geol., v.33(4), pp.609–623.

    Article  Google Scholar 

  • Prakash, R., Swarup, P., Srivastava, R.N. (1975) Geology and mineralisation in the southern parts of Bundelkhand in Lalitpur district, Uttar Pradesh. Jour. Geol. Soc. India, v.16(2), pp.143–156.

    Google Scholar 

  • Rahman, A., Zainuddin, S.M. (1993) Bundelkhand granites: an example of collision-related Precambrian magmatism and its relevance to the evolution of the Central Indian Shield. Jour. Geol., v.101(3), pp.413–419.

    Article  Google Scholar 

  • Ramakrishnan, M., Vaidyanadhan, R. (2010) Geology of India. Geol. Soc. India, vol.1, 555p.

  • Rao JM (2004) The wide spread 2 Ga dyke activity in the Indian shield-evidences from Bundelkhand mafic dyke swarm, central India and their tectonic implications. Gondwana Res., v.7(4), pp.1219–1228.

    Article  Google Scholar 

  • Ripley, B.D. (1977) Modelling spatial patterns. Jour. Royal Statistical Soc. Series B (Methodological), pp.172–212.

  • Roday, P.P., Diwan, P., Singh, S. (1995) A kinematic model of emplacement of quartz reefs and subsequent deformation patterns in the central Indian Bundelkhand batholith. Proc. Indian Acad. Sci. -Earth Planet. Sci., v.104(3), pp.465–488.

    Google Scholar 

  • Sarkar, A., Trivedi, J.R., Gopalan, K., Singh, P.N., Das, A.K., Paul, D.K. (1984) Rb-Sr geochronology of Bundelkhand granitic complex in the Jhansi-Babina-Talbehat sector, UP, India. Indian Jour. Earth Sci., CEISM Seminar Volume, pp. 64–72.

  • Scott, L.M., Janikas, M.V. (2010) Spatial statistics in ArcGIS. Handbook of Applied Spatial Analysis, pp.27–41.

  • Seffens, W. (1999) Benoit. Science, v.285(5430), pp.1228–1228.

    Article  Google Scholar 

  • Soliva, R., Benedicto, A. (2004) A linkage criterion for segmented normal faults. Jour. Struc. Geol., v.26(12), pp2251–2267.

    Article  Google Scholar 

  • Tobler, W.R. (1979) Cellular geography. In: Philosophy in geography. Springer Netherlands, pp.379–386.

    Chapter  Google Scholar 

  • Zainuddin, S.M., Mondal, M.E.A. (1998) Trends of Arc maturity in subduction related Bundelkhand batholith of central India. Indian Precambrian: Jodhpur, Scientific Publishers (India), pp.73–80.

    Google Scholar 

  • Zainuddin, S.M., Rahman, A., Mondal, M.E.A. (1994) Geochemical fingerprints of Bundelkhand granites as an indicator of minor Indian plate collision during Precambrian. Geology in South Asia-I, pp.161–168.

Download references

Acknowledgments

This study is a part of M. Sc. dissertation work of DD and a part of this study is funded by Center for Advanced Studies (CAS) and Department of Science and Technology - Science and Engineering Research Board (DST-SERB: ECR/2015/000079) early career research award to TKM. Tuhin Ghosh and Amit Ghosh are acknowledged for allowing the authors to learn the ArcGIS tool at the School of Oceanographic Studies, Jadavpur University. The authors are thankful to Adhir Basu for introducing the studied area. Reviews by anonymous reviewer significantly improved the manuscript. Editorial handling by B. Mahabaleswar is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tridib Kumar Mondal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, D., Mondal, T.K. & Hossain, M.S. Quantification of Quartz Reefs and Mafic Dykes of Bundelkhand, Craton, Central India: A Study Based on Spatial and Fractal Analysis. J Geol Soc India 94, 227–237 (2019). https://doi.org/10.1007/s12594-019-1301-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12594-019-1301-y

Navigation